ایجاد شاخص‌های ماهانه چرخندگی بر اساس گردش جوی منطقه‌ای در جنوب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد هواشناسی کشاورزی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز

2 استادیار هواشناسی کشاورزی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز

3 استادیار اقلیم شناسی، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان

چکیده

شاخص­های چرخندگی از جمله شاخص­های غیر فرارفتی گردش جوی  و معرف نوع و شدت سامانه­های فشاری در نقشه­های همدیدی می باشند و معمولا در زمان و مکان میانگین­گیری می­شوند. در  این پژوهش دو هدف اصلی  دنبال می­ شود: هدف اول ایجاد شاخص­های چرخندگی بلند مدت در جنوب ایران بااستفاده از مدل گردش منطقه­ای (RCM) و هدف دوم بررسی پاسخ­های اقلیمی به شاخص­های چرخندگی ایجاد شده است که بیانگر تاثیرات گردش جوی منطقه­ای بر عناصر اصلی اقلیمی (دما و بارش) می­باشند. شاخص­های چرخندگی در تراز دریا و جوبالا (500 هکتوپاسکال) از نقشه­های میانگین ماهانه استخراج شدند. این نقشه­ها توسط مرکز فرایابی های اقلیمی (CDC) تهیه و توسط سازمان پژوهش های جوی و اقیانوسی (NOAA)  ایالات متحده منتشر می شوند. به منظور بدست آوردن اندازه مناسبی از نقشه های همدیدی طول جغرافیایی 10 درجه غربی تا 80 درجه شرقی و عرض جغرافیایی 10 درجه شمالی تا 80 درجه شمالی انتخاب شدند تا پوشش مناسبی از سطوح اطراف که از نظر همدیدی به طور مستقیم یا غیر مستقیم بر الگوهای گردش جوی تاثیرگذار هستند به دست آید. این شاخص ها در 8 ناحیه از جنوب ایران(اهواز، شیراز، بوشهر، کرمان، بندرعباس، جاسک، زاهدان و چابهار) ایجاد گردیدند. معیار به دست آوردن این شاخص­ها انحنا و گرادیان خطوط تراز می­باشد که نشان دهنده نوع و شدت گردش است. سری های زمانی شاخص های چرخندگی در سطح زمین و جو بالا با خطایی کمتر از 10درصد ایجاد شدند. این شاخص ها برای منطقه ای به شعاع تقریبی 350-300 کیلومتر از هر مرکز معتبر می باشد. محدوده تغییرات این شاخص از 2- تا 2+ (با تفکیک 1/0) است که به ترتیب نشان دهنده اثر پرفشارها و کم فشار ها (یا الگوهای پشته و ناوه) در گردش جوی است. ترکیب شاخص های چرخندگی در سطح زمین و جو بالا در هر مرکز به طور پیشرفته ای، وضعیت اقلیم شناسی همدیدی منطقه را توضیح می دهد. نتایج به دست آمده الگوهای متضاد گردش جوی در نیمه گرم سال (آوریل تا سپتامبر) را در دو سطح نشان می دهد. با توجه به شاخص های چرخندگی ایجاد شده در نیمه گرم سال کم فشار حرارتی و در سطح 500 هکتوپاسکال پرارتفاع جنب حاره ای حاکم می باشد. در نیمه سرد سال (اکتبر تا دسامبر و ژانویه تا مارس) جریانات خارجی گردش جوی اجازه عبور از منطقه را پیدا می کنند. پاسخ های اقلیمی به شاخص های چرخندگی نشان می دهد که به طور کلی دما بهتر از بارش با شاخص های چرخندگی واکنش نشان می دهد. 

کلیدواژه‌ها


عنوان مقاله [English]

Creation of Monthly Cyclonicity Indices According to the Regional Atmospheric Circulation in Southern Iran

نویسندگان [English]

  • Ali Tabatabaian 1
  • Mohammad Reza Pishvaei 2
  • peyman mahmuodi 3
1 Department of Water Engineering, Faculty of Agriculture, Shiraz University, Shiraz, Iran
2 Department of Water Engineering, Faculty of Agriculture, Shiraz University, Shiraz, Iran
3 Department of physical Geography, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Based on the results obtained in all of the studied centers in the semi-warm year, contrasting pressure systems are dominant in two levels. That is, in the sea level, thermal low pressure is dominant and at 500 hpa level, subtropical high pressure is dominant. The mean correlation coefficient in eight studied centers between the monthly surface cyclonicity indices (SCI) and the monthly upper cyclonicity indices (UCI) is -42.5, which this contrast is more evident in southwest of the country with the mean correlation coefficient of -0.55.
With regard to created cyclonicity indices, the initiation of thermal low pressure on activity on the surface of the earth in the south and southeast parts of the country is earlier than the southwest regions of Iran. The initiation of this thermal system is March (with a mean of + 0.7) in the south and southeast regions and May (with a mean of +0.7) in the southwest. The peak of this low-pressure activity was in July, which its value was + 1.5 in the south and southeast and + 1/2 in the southwest regions. The thermal low-pressure system in the south of Iran has been active until September, and this thermal system weakened and disappeared since the beginning of October. This thermal system is stronger in southeast of Iran than other regions in the warm half of year with a mean of +1.
In the warm season in the middle atmosphere (500 hpa level), we see subtropical high pressure system in south of Iran. The initiation of the system's activity has been around May and peak of its activity was in July. The system is gradually weakening in October and disappearing in November. The created cyclonicity indices show that subtropical high pressure system is stronger in south and southwest regions with mean of -1.0 compared to that in eastern regions in the warm half of year. In the cold half of year when the inter-tropical convergence zone displaces to lower latitudes, western flows are allowed to pass through south of Iran by disappearing of thermal low-temperature and subtropical high pressure at the above atmosphere. According to cyclonicity indices created on the surface of the earth and the above atmosphere, it was observed that anticyclone type of atmospheric flow has weak dominance to cyclone type of atmospheric flow in whole region in the cold half of year. On the surface of earth, this was more evident for southwest part of country (with mean of -0.6).
According to the results obtained, it was shown that in general, temperature shows better correlation cyclonicity indices, compared to precipitation (according to calculated coefficients). This result suggests that precipitation has high temporal and spatial variations compared to the temperature. Generally, temperature in the cold half season of the year is correlated better UCI indices and the effect of these two indices on the temperature in the warm half of year is almost the same. Given the fact that most of precipitations occur in the cold half of year in this region, in the region occurs in the cold season, results show that among these two indices, UCI indices  control the major part of precipitation in south of Iran. This index has a significant effect on precipitation with a positive effect and temperature with a negative effect. It means that cyclonic dominance at the 500 hpa level would lead to precipitation and reduced temperature.  Such a situation occurs during the winter with the presence of dynamic high pressure systems in the region.

کلیدواژه‌ها [English]

  • Cyclonicity index – Iran
  • Regional Circulation Model – temperature
  • precipitation
  1.  

    1. Brunetti, M., M. Maugeri, T. Nanni, T, 2002, Atmospheric Circulation and Precipitation in Italy for the Last 50 Years. International Journal of Climatology, Vol. 22, No. 12, pp: 1455-1471.
    2. Dzerdzeevshij, B. L, 1970, Cirkulacjonnyje Mechanizmy w Atmosfiere dla Sieviernogo Połuszarija i Szesti Jego Siektorov (statisticzeskije dannyje dla połuszarija i szesti jego siektorov), MGK pri Prezidjumie AN SSSR, Mat. Met. Issl., Moskwa.
    3. Falarz, M, 2002, Long-term Variability in Reconstructed and Observed Snow Over the Last 100 Winter Seasons in Cracow and Zakopane (Southern Poland). Climate Research, Vol. 19, pp. 247-256.
    4. Girjatowicz, J. P, 2001, Effects of Atmospheric Circulation on Ice Conditions the Southern Baltic Coastal Lagoons. International Journal of Climatology, Vol. 21,  pp. 1593-1605.
    5. Girs, A. A, 1948, K Voprosu Izuczenija Osnovnych Form Atmosfiernoj Cirkulacii. Met. Gidr., Vol. 10, pp. 56-74.
    6. Golmohammadian, H., M. R. Pisvaei, 2013, Production of Daily Cyclonicity Indices and its effect on temperature and precipitation over Khorasan region in 1948-2010 Period, Journal of Applied researches in Geographical Sciences, 13 (29), pp. 217-236. (In Persian)
    7. Katz, W., 1993, Effects of an Index of Atmospheric Circulation on Stochastic Properties of Precipitation. water resources research, Vol. 29, NO. 7, pp 2335-2344.
    8. Kutiel, H., P. Maheras, 1999, Variation in Temperature Regime Across Mediterranean During the last Century and their Relationship with Circulation Indices. Theoretical and Applied Climatology. Vol. 61, pp. 39-53.
    9. Kutiel, H., P. Maheras, and S. Guika, 1996, Circulation Indices and their Relationship with Rainfall Conditions across the Mediterranean. Theoretical  and Applied Climatology, Vol. 54,  pp.125–138.
    10. Lamb, H. H., 1972, British Isles Weather Types and a Register of Daily Sequence of Circulation Patterns 1861-1971. Geophysical Memoir., Vol.116, HMSO, London, 85pp.
    11. Lapin, M., J. Tomlain, 2001, General and Regional Climatology (Všeobecna a regionalna klimatologia). published in Bratislava  (Slovak), 184 pp.
    12. Losleben, M., N. Pepin, and S. Pedrick, 2000, Relationship of Precipitation Chemistry, Atmospheric Circulation and Elevation at Two Sites on the Colorado Front Range. Atmospheric Environment, Vol. 34. pp. 1723-1737.
    13. Lund, I. A., 1963,  Map-Pattern Classification by Statistical Methods J. Apple. Meteorology; Vol. 2, pp.56-65.
    14. Muller, R. A., 1977, A Synoptic Climatology for Environmental Baseline Analysis. New Orleans, J. Appl. Met., No.16, pp. 20-33.
    15. Niedzwiedz, T., 1993, Changes of Atmospheric Circulation (using the P,S,C,M indices) in the Winter Season and their Influence on Air Temperature in Cracow. Early Meteorological Instrumental Records in Europe-Methods and Results, Cracow., No. 95, pp. 107-113.
    16. Niedzwiedz, T., 2000, Variability of the Atmospheric Circulation above Central Europe in the light of Selected Indices. Prage Geograficzne, 107. pp. 379-389.
    17. Niedzwiedz, T., 2004, Role of Atmospheric Circulation on the January Temperature Variability in Spitsbergen. Journal of Theoretical and Applied Climatology. Vol. 90, pp. 124-138.
    18. Niedzwiedz, T., R. Twardoz, and A. Walanus, 2009, Long-term Variability of Precipitation Series in East Central Europe in Relation to Circulation Patterns. Journal of Theoretical and Applied Climatology. Vol. 98, No. 3-4, pp. 256-268.
    19. Pishvaei, M. R., A. Ansaribasir and M. R Farzaneh, 2006, Regional Atmospheric Circulation model for Creation of Cyclonicity Indices in Southern Iran.  6th Conference of Numerical Weather Prediction, 20th December, Tehran, Iran. (In Persian)
    20. Pishvaei, M. R., and M.  Lapin, 2008, Regional Circulation Effects Reflected by Cyclonicity Indices over Eastern Mediterranean Sea.  European Geophysical Society, Vienna.
    21. Sturman, A. P., M. Soons, 1984, Precipitation Intensity and Variability at Chilton Valley, Near Cass, Southern Alps. Journal of Hydrology. Vol. 23, No. 1, pp. 10-20.
    22. Tomingas, O., 2002, Relationship between Atmospheric Circulation Indices and Climate Variability in Estonia. Boreal Environment Research, Vol. 7, pp. 463-469.
    23. Twardosz, R., 1999, Precipitation Variability and Tendency in Kraków for the Period 1850-1997 Related to Circulation Patterns. Acta Geophysica Polonica., Vol, 47, No1, pp. 111-133.
    24. Ustrnul, Z., D. Czekierda, 2001, Circulation Background of the Atmospheric Recipitation in the Central Europe (based on the Polish example). Eteorologische Zeitschrift., Vol. 10, No. 2, pp. 901-908.
    25. Seep, M., and J. Jaagus, 2002, Frequency of Circulation Patterns and Air Temperature Variations in Europe. Boreal Environment Reserch, Vol. 7, pp. 273-279.
    26. Wangenheim, G., 1938, Kvoprosu Tipizacjii Schematizacji Sinopticzeskich Procesov. Met. IGidr., Vol. 3, pp. 79-108.
    27. Yarnal, B., 1993, Synoptic Climatology in Environmental Analysis. United Kingdom: Belhaven Press, 195 pp.