بررسی تغییرات زمانی و مکانی کم‌فشار پاکستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار اقلیم شناسی دانشگاه سیستان و بلوچستان

2 استادیار جغرافیای طبیعی( اقلیم‌شناسی)، دانشگاه سیستان و بلوچستان،زاهدان،ایران

3 دانشجوی کارشناسی ارشد، آب‌وهواشناسی کاربردی، دانشگاه سیستان و بلوچستان،زاهدان،ایران

چکیده

کم‌فشار پاکستان یکی از سامانه‌های شبه دائمی مهم و تأثیرگذار در فصل گرم سال در جنوب آسیا است و به دلیل نقش آن در اقلیم تابستانی منطقه تحت نفوذ خود از اهمیت بالایی برخوردار است. در پژوهش حاضر به تحلیل تغییرات زمانی این کم‌فشار به روش سینوپتیک - آماری پرداخته‌شده است. در این مطالعه متوسط متغیر فشار تراز دریا طی دوره آماری 2015-1980 در محدوده مکانی 5/62 تا 5/72 درجه طول شرقی و 5/22تا 5/32 درجه عرض شمالی مربوط به دوره­ی گرم سال (ژوئن، جولای، اوت و سپتامبر) از داده­های شبکه­ای ERA-Interim مرکز پیش بینی میان مدت اروپایی استخراج‌شده است. تغییرات زمانی کم­فشار پاکستان به‌صورت سری زمانی سالانه و ماهانه فشار مرکزی کم­فشار و همچنین نابهنجاری­های دهه­ای آن مبتنی بر فشار میانگین درازمدت بررسی شد. برای بررسی روند این تغییرات از آزمون های ناپارامتریک من-کندال و شیب سن استفاده شد. نتایج پژوهش نشان داد که فشار مرکزی این سامانه به‌طور متوسط 31/997 (ه.پ) است و بیشینه و کمینه فشار مرکزی این سامانه به ترتیب  در سال 1984 و 2015 با فشار مرکزی 996 (ه.پ) و 999 (ه.پ) رخ‌داده است. به لحاظ فشار مرکزی سامانه در مقیاس سالانه از روندی افزایشی برخوردار بوده و این شرایط در مقیاس ماهانه­ برای ماه‌های ژوئن و اوت نیز قابل‌مشاهده است. هرچند سطح معنی­داری آزمون روند کمتر از 90 درصد بوده است. بررسی ناهنجاری­های دهه­ای فشار مرکزی سامانه بیانگر این مطلب است که فشار مرکزی این سامانه­ در دو دهه­ی اول نسبت به متوسط درازمدت کاهش‌یافته و در دهه­ی سوم و پنج سال پایانی بر میزان فشار مرکزی این سامانه افزوده‌شده است. از دیگر نتایج این مطالعه این است که کم­فشار پاکستان یک سامانه­ی دوقطبی با هسته قوی در شرق پاکستان(دره سند) و هسته فرعی ضعیف‌تر بر روی دشت مارگو(جنوب غرب افغانستان) است. درنهایت فشار مرکزی کم‌فشار پاکستان طی بازه‌ی زمانی موردمطالعه افزایش داشته، بنابراین می­توان نتیجه گرفت که سامانه با شیب ملایمی رو به تضعیف است

کلیدواژه‌ها


عنوان مقاله [English]

A Study of Tempo Spatial Variation of Pakistan Low Pressure

نویسندگان [English]

  • Mahmood Khosravi 1
  • Mohsen Hamidianpour 2
  • Saleh Kordi Tamin 3
1 Associate professor in Climatology, Department of Physical Geography, University of Sistan and Baluchestan,Zahedan,Iran
2 Assistant professor in Climatology, Department of Physical Geography, University of Sistan and Baluchestan,Zahedan,Iran
3 Ms.c. in Climatology, Department of Physical Geography, University of Sistan and Baluchestan,Zahedan,Iran
چکیده [English]

Introduction
Long-term synoptic maps related to sea levels show the presence of a semi-permanent, low-pressure system in the warm season in the Indian subcontinent, southern Afghanistan, Pakistan and Central Plateau of Iran, known as Low-Pressure Pakistan or Gang. The above mentioned low pressure refers to thermal low pressure created on Sindh basin in Pakistan due to the entry of solar radiation in May and June. Since the daily radiation is more than the nightly radiation, this thermal low pressure has become a permanent summer system (Boucher, 1975, 132; Kaviani and Alijani, 1999, 192). Pakistan thermal low pressure is an important and effective system in the climate of Pakistan, the northwest of India, the southwest of Afghanistan, and the southeast and east of Iran. Therefore, extensive studies have been conducted to examine the effect of this system on other parameters and climatic phenomena such as the studies by Iqbal and Jawaid (2008), Faisal and et al., (2013); Alijani et al., (2011); Khosravi et al., (2011). The study by Bollasina and Nigam (2011) which is a complete study on Pakistan low pressure, on the origins and changes of summer low pressure in Pakistan and northwest India, concluded that Pakistan-India low-pressure current influence two regional and remote forces. In regional scale, the effects of Hindu Kush Mountains were stronger than those of Earth surface and talent temperatures. The effects caused by remote factors, rooted in convection currents in Gulf of Bengal and East India in June and July, are also of importance. According to the importance of this system and its effect on the Iranian climate especially in the southeast, it is essential to study the tempo spatial variation. Therefore, the main questions outlined here are as follows: What are the changes of Pakistan low pressure during the statistical period? How are the spatial changes over time? How are the changes in terms of intensity over time?
 
 
Data and Methodology
ECMWF (ERA-Interim Version) with a spatial resolution of 1*1° was used in the geographical area (Latitude of 20-50° N and Longitude of 20-90° E) for the warm seasons (June to September). The statistical period 1980-2015 was taken into account. In order to extract the central pressure, the longitude of 62.5° to 72.5°E and latitude of 22.5°to 32.5°N were defined. First, the annual minimum pressure was extracted in the form of time series. Man-Kendal non-parametric trend tests were employed to study the variations.
 
Results and Discussion
36-year medium maps (1980-2015) for sea level pressure over the warm seasons show the deployment of the low-pressure system with two closed cells. As it is clear in the literature review, the system is a feature of warm seasons usually created as a result of extreme heats of underlying atmosphere along with the dynamical subduction originating from the West Indies in the south of Pakistan (Ramage, 1966). According to the time-series results, the lowest pressure was reported in 1984 with the central pressure of 996, and the maximum was reported in 2015 (999). A review of monthly Pakistan low pressure shows that the central pressure of this system has different fluctuations. It experiences a rising trend over all months. The increase was evaluated at three confidence levels (90%, 95%, and 99%). They are not significant, however. The greatest rising trend was observed in June and lowest in July. As a result, the system experiences a slightly increasing trend. Decade anomaly of central pressure was also studied in monthly and yearly scale. Table 1 shows the results. According to the results, the central pressure of the system is weakening and the last decade has the highest central pressure.
 
 
 
 
 
Table 1: Anomaly of Central Pressure of Pakistan Low Pressure (1981-2015), Based on Spatial Period (Latitude of 22.5*32.5°N and of Longitude 72.5*62.5° E)




Period


Pressure


Difference




Total Average (1981-2015)


997.31


-




First decade


997.26


-0.05




Second decade


997.19


-0.12




Third decade


997.29


-0.02




Five years of latest


997.63


0/32




 
Finally, Hoff Muller Maps were used to describe the static continuity variations, that is, spatial changes of this low-pressure region during two periods (1980-1989 and 2005-2016). The results showed that Pakistan low pressure has no specific spatial extent or displacement of the East or the West direction. In other words, the system has equal extent over the initial and closing decades.
 
Conclusion
Pakistan low pressure is an important, effective system in South Asian regions. It is of great importance in the region. This article aimed to study the tempo variations of this system using Man-Kendal nonparametric test and the Sen's estimator of slope. The monthly and annual review show that this system has a rising central pressure trend. In other words, it is weakening. Note that the increase is slight and is not significant at 95%, 90%, and 99%. Anomaly map review shows verified it, too so that the greatest central pressure was observed in the recent decade. The system did not show any specific spatial variation.

کلیدواژه‌ها [English]

  • Southeast of Iran
  • Low pressure system
  • Anomalies
  • Trend Analysis
  • Monsoon
  1.  

    1. Ahasan, M. N, M,A.M. Chowdhury, D.A. Quadir., 2014, The Summer Monsoon  Weather Systems and Its Relationship with Rainfall over South Asia, Open Journal OF Atmospheric and Climate Change, 2:20- 37.
    2. Alijani, B., 1992. The Climate of Iran. Tehran. SAMT Press. (In Persian).
    3. Alijani, B., A. Mofidi, Z. Jafarpour, and A. Aliakbari-Bidokhti, 2011. Atmospheric circulation patterns of the summertime rainfalls of southeastern Iran during July 1994. Journal of the Earth and Space Physics. 3: 205-227. (In Persian).
    4. Bollasina M., S. Nigam, 2011, The summertime ‘‘heat’’ low over Pakistan/northwestern India: evolution and origin,37: 957-970.
    5. Boucher, K., 1975. Global Climates. Chapter1. Translated by Ghaemie H., Tehran: SAMT Press. Page 148.(In Persian).
    6. Boos, W .R, 2014, Understanding the Global Distribution of Monsoon Depressions, 14: 1-11.
    7. Faisal, N, A. Jameel, S. B. Cheema, A. Ghuffar, A. Mahmood, G. Rasul, 2013, Third Successive Active Monsoon over Pakistan - An Analysis and Diagnostic Study of Monsoon 2012, Pakistan Journal of Meteorology, 9: 73-84.
    8. Gandomkar, A., 2009. Synoptic investigating of wind energy in Sistan region. Journal of Geographic Space, 27: 161-180. (In Persian).
    9. Hossein Zadeh, R. 1997. The Winds of 120 days of Sistan. Geographical research. 12: 102-127. (In Persian).
    10. Hamidianpour M, A. Mofidi and M. Saligheh, 2016. Analysis of the nature and structure of Sistan wind. Iranian Journal of Geophysics. 10: 83-109. (In Persian).
    11. Hamidianpour M, A. Mofidi, M. Saligheh, and B. Alijani. 2017. The role of topography on the simulation of Sistan wind structure in the east of Iranian Plateau. Researches in Geographical Sciences; 16 (43):25-53. (In Persian).
    12. Iqbal, J., Q. Jawaid, 2008, Modelling the Impact of Indian Ocean on Pakistan Summer Monsoon Rainfall, International Journal of Statistical Sciences, 8: 75-90.
    13. Jaagus, J., 2006, Climatic changes in Estonia during the Second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theoretical and Applied Climatology,83: 77-88.
    14. Kaviani, M.R., B. Alijani, 1999. The Principles to Climatology. Iran: SAMT Press. (In Persian).
    15. Khosravi, M., M. Salighe , B Sabaghi,2011, The Effects of Oman Sea Surface Temperature Anomalies in Autumn and Winter Precipitation of Southeast Coasts of Iran, Journal of Geography and Planning, 16(37):59-81
    16. Khosravi, M., A. Khorani, M. Khosravi, 2013. The role of Persian Gulf on the situation of Iranian climate. Journal of Development and Teaching of Geography. 2.:43-48. (In Persian)
    17. Khoshhal Dastjerdi, J., and T. Alizade, 2010. The synoptic and thermodynamic analysis of shower due to flood 13/9/2009 in Razavi Khorasan Province. The journal of Spatial Planning. 14: 88-109. (In Persian).
    18. Johnson, RH, 2003, Thermal low. In: Holton J, Pyle J, Curry JA (eds) Encyclopedia of atmospheric science, Academic Press, London United Kingdom, pp. 2269–2273.
    19. Masoodian, A., M.R. Kaviani, 2009. The Climatology of Iran. Esfahan University Press. 1th edition. (In Persian)
    20. Mofidi, A., A. Zarrin, 2006.  The Analysis of the Nature and Structure of  High and Low-Pressure Systems; Part A, Journal of Development and Teaching in Geology, 46: 53-61. Part B, 47: 54-88. (In Persian)
    21. Mofidi, A., A. Zarrin, 2012. Investigating the Nature, Structure and Temporal Variation of Summertime Large-scale Atmospheric Circulation over Southwest Asia. Journal of Climate Research. 11: 15-40. (In Persian).
    22. Najjar Salighe, M., 2001. The synoptic patterns of summertime rainfall in the southeastern Iran. Geographical research. 62: 114-125. (In Persian).
    23. Ramage CS., 1966. The Summer Atmospheric Circulation over the Arabian Sea. Journal Atmospheric.23: 144-150.
    24. Salighe, M., 2007. The Precipitation Mechanisms in southeastern Iran. Geographical Research Quarterly.38: 1-13. (In Persian).
    25. Salighe, M., 2010. Common effects of thermal contrast between atmospheric systems in Islamic countries (Case study: 120 days Sistan winds). The 4th Congress of Geographers of the Islamic World. pp. 1-17. (In Persian).
    26. Salighe, M., 2016. The Synoptic Climatology of Iran. Tehran. SAMT Press. (In Persian).
    27. Sarfaraz. 2007, Monsoon Dynamics: It's Behavioral Impact In Pakistan’s Perspective, Pakistan Journal of Meteorology. 4: 55-73.
    28. Sen, P. 1968. Estimates of the regression coefficient based on Kendall’s tau”, Journal of American Statistical Association, 63: 1379–1389.
    29. Sorland, S., S. Asgeir, 2015, Low-pressure systems and extreme precipitation in central India sensitivity to temperature changes, Clim Dyn. 10: 15-28.
    30. Spengler, T., R.K. Smith, 2008. The dynamics of heat lows over flat terrain. Quarterly Journal of the Royal Meteorological Society. .637: 2157-2172. 
    31. Sueyers, R., 1990. on the Statistical Analysis of Series of Observation,” WMO, 415: 2 – 15.
    32. Zoljoodi, M, 2015. The Study of Sea Level Pressure Patterns and the Wind aloft Features over the Middle East and the Persian Gulf Area during Spring Transition, Marine Science. 6: 11-20.