تحلیل عدم قطعیت ناشی از طول دوره آماری و مقیاس زمانی در برآورد شاخص بارش استاندارد شده با استفاده از روش بازنمونه‌گیری بوت استرپ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آبخیزداری، گروه مهندسی منابع طبیعی، دانشگاه هرمزگان، بندرعباس

2 دانشیار گروه مهندسی منابع طبیعی، دانشگاه هرمزگان، بندرعباس

3 استادیار، گروه آمار و ریاضی، دانشگاه هرمزگان، بندرعباس

چکیده

SPI به طور گسترده در پایش خشکسالی مورد استفاده قرار می گیرد، در محاسبه‌ی این شاخص طول دوره‌ی آماری و مقیاس زمانی مورد بررسی از اهمیت ویژه ای برخوردار است. در تحقیق حاضر، عدم قطعیت برآورد SPI در انتخاب طول دوره آماری و مقیاس زمانی با استفاده از بارش ماهانه براساس تابع توزیع گاما در ایستگاه سینوپتیک بندرعباس در دو طول دوره‌ی 31 و 64 ساله بررسی گردید. لذا مقادیر بارش برای مقیاس‌های زمانی 6، 12، 24 و 48 ماهه در دو دوره‌ی معرفی شده محاسبه و سپس با استفاده از روش بوت استرپ به ازای هر واقعه بارش در هر مقیاس زمانی، 1000 داده تصادفی تولید و فاصله اطمینان SPI در حدود اطمینان 95درصد محاسبه گردید. اندازه‌ی فاصله اطمینان بعنوان عدم قطعیت مورد نظر قرار گرفت و میزان خطا بین مقادیر برآورد شده و مشاهده‌ای محاسبه گردید. در بررسی عدم قطعیت ناشی از مقیاس زمانی و طول دوره زمانی، نتایج نشان داد افزایش مقیاس زمانی سبب افزایش میزان عدم قطعیت و افزایش خطا می‌گردد بطوریکه متوسط عدم قطعیت در مقیاس 3 تا 48 ماهه در دوره‌ی کوتاه‌مدت 31ساله از 63/0 به 97/1 و میزان خطا از 11/0 به 45/0 افزایش یافت در حالیکه در دوره‌ی 66 ساله میزان عدم قطعیت در مقیاس 6 تا 48 ماهه از 41/0 به 21/1 و میزان خطا از 05/0 به 21/0 افزایش یافت. بطورکلی نتایج نشان می‌دهد، در مقیاس‌های زمانی یکسان در دوره‌های کوتاه مدت نسبت به بلند مدت میزان خطا و عدم قطعیت افزایش می‌یابد. با توجه به قضاوت احتمالی نادرست درجه خشکسالی در دوره‌های کوتاه مدت، نتایج حاصل از عدم قطعیت نمونه‌گیری می‌تواند برای کاهش خسارات احتمالی ناشی از آن و تهیه استراتژی‌های کاهش اثرات خشکسالی مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Uncertainty analysis of sample size and time scale in estimation of SPI using bootstrap resampling method

نویسندگان [English]

  • Fateme Pourhaghverdi 1
  • Ommolbanin bazrafshan 2
  • Hamid Gholami 2
  • Marziye Shekari 3
  • Hossein Zamani 3
1 Department of Natural Resources Engineering and Statistics, Faculty of Agricultural and Natural Resources Engineering, University of Hormozgan, Bandarabbas, Iran.
2 university of Hormozgan
3 Department of Mathematics and Statistics, Faculty of Science, University of Hormozgan, Bandarabbas, Iran.
چکیده [English]

Introduction

Drought is a complicated natural phenomenon that occurs basically due to the lack of precipitation over a time period. And its occurrence usually results in great costs on various parts of the natural and the society. Among the various indices in climate drought monitoring, the SPI index (McKee et al., 1993) is the most well-known index, in terms of easy access to its data (rainfall); It is also possible to calculate it in any time window; Ability to calculate magnitude, frequency and continuity; The possibility of quick detection of soil moisture and the possibility of showing the spatial distribution of drought-dominated areas are widely used all over the world (Mishra and Desai, 2005). Standardized Precipitation Index (SPI) can be calculated for any location based on long-term recorded precipitation data. Calculating the SPI drought index in each of the time scales can be considered as one of the advantages of this index. The length of the rainfall data recording period as well as the nature of the probability distributions play an important role in calculating the SPI drought index and these factors are among its limitations.



Methods and materials

In the present research, the uncertainty of SPI estimation in choosing the length of the statistical period and time scale was investigated using monthly rainfall based on the gamma distribution function at Bandar Abbas synoptic station in two periods of 31 and 64 years. Therefore, the rainfall for the time scales of 3, 6, 12, 24 and 48 months in the two mentioned time periods was calculated and then using the bootstrap method for each rainfall event in each time scale, 1000 random data were generated and the SPI confidence interval was about 95% confidence was calculated. The size of the confidence interval (the difference between the upper band and the lower band) was considered as uncertainty and the absolute ratio error (ARE) between the estimated and observed values was calculated.



Results and discussion

ARE and uncertainty due to bootstrap estimation were estimated in two time periods and scales from 3 to 48. The greater the difference between the bands, the lower the certainty and the greater the uncertainty (Vergeni et al., 2015). Therefore, a longer period of time (large number of samplings) has less uncertainty, since the number of samples decreases as the time scale increases, so the uncertainty bandwidth increases. For example, in the 3 and 6-month scale in the 31-year period, the estimation error is 0.09, 0.11 and in the 66-year period is 0.03, 0.05, and the uncertainty has decreased from 0.051, 0.63 and 0.38, 0.41, respectively. In the 12-month scale, the error rate in the short and long term is 0.12 and 0.01, respectively, and the uncertainty is 0.81 and 0.55, respectively. In the 24-month scale, the error in the 31-year period is 0.31, which decreases to 0.1 in the long-term period of 66 years, and in 48 months, it decreases from 0.45 to 0.27, and in the same way, the uncertainty level in the long-term period is Scales 24 and 48 are reduced.

Based on the results of two short (31 years) and long (66 years) samples, it showed that there was more uncertainty and error in the samples with a small number, and considering the overestimation or underestimation caused by the length of the short period in the diagnosis of drought classes Historical events have been misjudged and lead to inappropriate drought mitigation measures, as classifying a high-grade drought event (Class 9) to a lower grade (Class 8 or lower) can lead to misleading decision-making.

Conclusion

SPI was able to successfully detect historical droughts in the two investigated periods. The increase of records from 31 to 66 years led to the emergence of one of the most unique features of SPI, i.e. repeatability, reversibility and predictability. The confidence interval resulting from the difference between the upper and lower bands estimated by the bootstrap resampling method indicates uncertainty, the smaller the bandwidth or the result of the difference, the lower the uncertainty and the more reliable it is. In this research, the error caused by bootstrap estimation in 1000 sampling times was also estimated. Based on the obtained results, increasing the number of samples from 31 years to 66 years causes a decrease in uncertainty and error, and as a result, increasing the time scale due to the decrease in the number of samples due to data averaging causes an increase in uncertainty and estimation error. The studied area has It has had long dry and wetter periods in the past and has experienced numerous historical events. Therefore, it is necessary to pay attention to the possible judgments caused by wrong estimation and uncertainty in the observational data, and in this way, seek to reduce the possible damages caused by overestimating or underestimating drought.

کلیدواژه‌ها [English]

  • Drought monitoring
  • uncertainty analysis
  • bootstrap
  • sampling
  • standardized precipitation index
  1. Azhdari, Z., Bazrafshan, O., Zamani, H., Shekari, M., & Singh, V. P. (2021). Hydro-meteorological drought risk assessment using linear and nonlinear multivariate methods. Physics and Chemistry of the Earth, Parts A/B/C, 123, 103046.
  2. Bazarafshan, O., Mahmoudzadeh, F., Bazarafshan, J. (2015). Evaluation of drought changes based on standardized precipitation index and standardized evapotranspiration index in southern coasts of Iran. Scientific Research Journal of Desert Management doi: 10.22034/JDMAL.2017.24662
  3. Bazrafshan, O., Zamani, H., & Shekari, M. (2020). A copula‐based index for drought analysis in arid and semi‐arid regions of Iran. Natural Resource Modeling, 33(1), e12237.
  4. Cancelliere, A., and Bonaccorso, B., (2009). Uncertainty analysis of the Standardized Precipitation Index in the presence of trend. 29th Annual American Geophysical Union Hydrology Days, Colorado, USA, pp. 25–27.
  5. Ghasemnejad, F., Fazeli, M., Bazarafshan, O., & Parveen Nia, M. (2018). Uncertainty analysis of hydrological drought characteristics using Latin hypercube (case study: Minab Dam watershed). Pasture and watershed scientific-research journal, 72 (2), 527-542. doi: 10.22059/jrwm. 2019.276424.1356
  6. Ghasemnezhad, F., Bazrafshan, O., Fazeli, M., Parvinnia, M., & Singh, V. (2022). Uncertainty Analysis of Hydrological Drought due to Record Length, Time Scale, and Probability Distribution Functions Using Monte-Carlo Simulation Method. Atmosphere, 13(9), 1-12.
  7. Gossa, E. T. (2020). Concept Environmental and Social Review Summary (ESRS)-Drought Early Warning, Finance, and Action Project-P173387.
  8. Guttman, N.B. (1999). Accepting the standardized precipitation index: a calculation algorithm. Journal of American Water Resources Association, 35, 311–322.
  9. Kao, Sh.Ch. and R.S. Govindaraju. 2010. A copula-based joint deficit index for droughts. Journal of Hydrology, 380: 121-134. [DOI:10.1016/j.jhydrol. 2009.10.029]
  10. Mathbout, S., Lopez-Bustins, J. A., Martin-Vide, J., Bech, J. and Rodrigo, F. S. (2018). Spatial and temporal analysis of drought variability at several time scales in Syria during 1961–2012. Atmospheric Research, 200, 153-168.
  11. Mckee T. B, Doseken N.J, Kleist J, 1993. The Relationship of Drought Frequency and Duration to Time Scales. In: proc. 8th Conf. On Applied Climatology, American Meteorological Society, Massachusetts, pp.179-184.
  12. McKee TB, Doesken NJ and Kleist J, 1993. The relationship of drought frequency and duration to time scales. Pp 179-184. In Proceedings of the 8th Conference of Applied Climatology. 17-22 January, Anaheim, California.
  13. Mendicino G, Alfonso S, and Pasquale VA, 2008. Groundwater Resource Index (GRI) for drought monitoring and forecasting in a Mediterranean. Climate Journal of Hydrology 282-302.

 

  1. Mishra AK and Desai VR, 2005. Drought forecasting using stochastic models. Stochastic Environment Research Risk Assessment19: 326-339.
  2. Mishra, A.K., and Singh, V.P. (2010). A review of drought concepts. Journal of Hydrology,  391(1-2), 202–216.
  3. Nadi M, Shiukhy Soqanloo S. Comparison of SPI and SPImod in Drought Monitoring of Several Climatic Samples of Iran. jwmr 2020; 11 (21) :108-118
  4. Vergni, L., Di Lena, B., Todisco, F. and Mannocchi, F. (2017). Uncertainty in drought monitoring by the Standardized Precipitation Index: the case study of the Abruzzo region (central Italy). Theoretical and applied climatology, 128(1-2), 13-26.
  5. Wilhite DA, Svoboda MD, Hayes MJ. 2007. Understanding the complex impacts of drought: key to enhancing drought mitigation and preparedness. Water Resour. Manage. 21: 763–774.
  6. Wu, H., Hayes, M. J., Wilhite, D. A., & Svoboda, M. D. (2005). The effect of the length of record on the standardized precipitation index calculation.International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(4), 505-520.
  7. Zhang, Q., Xiao, M., Singh, V.P. and Chen, X. (2013). Copula-based risk evaluation of droughts across the Pearl River basin, China. Theoretical and Appllied Climatology, 111(1),119–131