تحلیل الگوهای جوی وقوع بارش‌ شدید در خراسان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار اقلیم شناسی، گروه جغرافیا دانشگاه فردوسی مشهد، ایران

2 کارشناسی ارشد اقلیم شناسی، گروه جغرافیا دانشگاه فردوسی مشهد، ایران

3 دانشیار اقلیم شناسی، مرکز ملی اقلیم شناسی مشهد، ایران

چکیده

بارش‌های شدید ویژگی ذاتی بارش ایران است، به این منظور، داده های روزانه بارش14 ایستگاه سینوپتیک در خراسان از 2017-1993، منطبق بر دوره روند سریع دمای کره زمین(بعد از 1970 میلادی)، استفاده شد. برای بررسی همدیدی، داده‌‌های باز تحلیل شده مرکز ملی پیش بینی محیطی و پژوهش های جوی آمریکا(NCEP/NCAR) با تفکیک مکانی 5/2 درجه در شبکه مختصات 70- 15 درجه شمالی و80- 15 درجه شرقی استفاده گردید. در‌‌این تحقیق از متغیرهای ارتفاع ژئوپتانسیل متر سطح ۵۰۰ هیکتوپاسکال به عنوان مبنا‌‌‌‌، فشار سطح دریا‌‌، مولفه‌های باد مداری (U) و نصف النهاری(V) سطح ۵۰۰ هیکتوپاسکال و رطوبت سطح ۸۵۰ هیکتوپاسکال استفاده شد. روز بارش شدید‌‌، روزی تعریف شد که مقدار بارش بیشتر از صدک 95 ام(بارش سنگین)، جهش در نمودار باران نگار ایستگاه ثبات و در دیگر ایستگاه ها(حداقل 50 درصد) همزمان بارش ریزش کند(بارش سیستمی). نتایج نشان داد، این بارش ها مشابه غالب مناطق ایران، با آرایش نصف النهاری موج کوتاه بادهای غربی و پدیده های نادر بلاکینگ و سردچال اتفاق می افتند، چنانکه در بارش های شدید خراسان موقعیت سردچال ها از قفقاز و ایران تا آسیای مرکزی با هسته حداقل ارتفاع 5280 متر وجود دارند. در سطح زمین در جلوی تراف در خراسان، مرکز سیکلون با حداقل فشار 1008 هکتوپاسکال و آنتی سیکلون در منطقه قفقاز و غرب خزر با حداقل فشار1025 هکتوپاسکال است، که نشان از یک سیکلون فعال و فراگیر بارش در خراسان دارد. این حاکی است، غالباً بدلیل دوری خراسان از مرکز سیکلون زایی دریای مدیترانه و با سد زاگرس، کمتر سیکلون های فعال و با بارش زیاد به خراسان میرسند، اما بعضاً با آرایش خاص بادهای غربی و سردچال ها، سیکلون ها ی فعال با رطوبت زیاد به شرق ایران میرسند و بارش های شدیدی را موجب میگردند.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of atmospheric patterns of heavy rainfall in Khorasan

نویسندگان [English]

  • reza doostan 1
  • Hadi Mansouri 2
  • Majid Habibi Nokhandan 3
1
2 Master of Climatology, Department of Geography, Ferdowsi University of Mashhad, Iran
3 Associate Professor of Climatology, Mashhad National Climatology Center, Iran
چکیده [English]

Introduction: The position of Iran between extratropical and subtropical latitudes, the location of a major part of Iran on the desert belt of the world from North Africa to Central Asia, and the role of various geographical phenomena in Iran have caused all kinds of atmospheric hazards in this region. To have an accident (Alijani, 2018). Such risks are inherent in Iran's climate and have occurred regularly since the distant past, as the natural environment and human activities in different regions of Iran have adapted to these phenomena. As the behavior of these phenomena has been repeated somewhat regularly and the climatic changes and short-term atmospheric processes have been less. These phenomena include droughts and droughts, heavy rains and floods, floods and dust storms, frosts, heat and cold waves (Omidvar-Kamal 2013). But in recent decades, with the increase in the temperature of the earth after the industrial revolution (1850), and with the intensification and rapid trend of temperature in the recent decades from 1970 onwards, the atmospheric hazards in the world, including Iran, have become abnormal. Such heavy and short-term rains cause a lot of damage related to agriculture, severe soil erosion, and destruction of transportation infrastructure and flooding of cities and villages. In recent years, in connection with global warming and changes in the behavior and anomaly of rainfall in the world, the amount of rainfall has decreased in this region, but the rainfall has mainly changed its behavior to heavy and short-term rainfall. Therefore, knowing the patterns that lead to the occurrence of these precipitations will be useful in the first place for predicting and managing precipitations. The aim of this research is to identify and analyze the atmospheric circulation patterns leading to the occurrence of heavy rain and short-term flooding based on the data of the stability rain gauge in Khorasan.



Materials and methods: in this study, the daily rainfall data and the rain logger of the stability station were used. Among the stations in the region, those that have a proper distribution in terms of spatial distribution and also have long-term statistics (1993-2017) were selected. The synoptic stations were chosen to cover all the regions of the province with different topography and climate diversity. In order to determine heavy rains, the 95th percentile index of daily rains in each station was used. In the following, days with heavy rainfall and more than 95th percentile were extracted in each of the stations using these indicators. The spatial distribution of these rainfalls in the whole province was determined by using the number of these rainfalls in the entire region. , heavy rain. In connection with the purpose of this study, determining the atmospheric patterns of heavy rainfall in Khorasan, after determining the days with heavy rainfall in the previous stage, the atmospheric patterns of rainfall were determined and synoptically analyzed. For this purpose, reanalyzed daily grid data with a resolution of 2.5 degrees were extracted from the National Center for Environmental Prediction and Atmospheric Research (NCEP/NCAR) for the above days. The selected window for receiving network data in this study is 15 to 70 degrees north and 15 to 80 degrees east, so that the patterns affecting Khorasan precipitation in this range can be identified.



Results and discussion:

On February 17, 2017, in the geopotential height map of the middle surface of the atmosphere, a trough is drawn over the entire western half of Iran and the western coast of the Caspian Sea, and the center of this trough is a closed cell with a height of 5280 geopotential meters over the northeast of the Caspian Sea and Kazakhstan. This deep trough extends to Saudi Arabia and passes through the center of Saudi Arabia at a height of 5750 meters and shows the penetration of cold air in the upper atmosphere to the warm southern sea of Iran. At the same time, in the east of the Mediterranean Sea, there is a Rex-type blocking. These atmospheric conditions caused persistence and slow movement of the circulation system in the synoptic scale in Southwest Asia. At the same time, there is a low pressure center with a pressure of 1010 HP in front of the curved ship in the east of Iran. The east of this trough extends from the southwest and the western half along the southwest to the northeast direction of Iran, which caused instability in the northeast of Iran. On April 1, 2016, the arrangement of westerly winds in the entire Eurasia area shows a large anomaly in the westerly wind waves, naturally in late winter and early spring, due to the reduction of temperature and pressure differences in the northern hemisphere, westerly winds move meridian. And the number of long waves also increases hemispherical. In this map, there are two meridional patterns of westerly winds in the north and south, the first pattern in the north with a deep and curved channel with a west-east direction and closed with two equal heights, cut off low respectively over Western Russia and Kazakhstan respectively with There are 5280 and 5440 meters, That on the surface of the earth in these two areas, two low pressures with a pressure of 1003 and 1011 HP, respectively, indicate a strong rotation and instability in these areas.

Conclusion: Heavy rains and floods are one of the most important weather hazards that cause great damage to nature and humans every year. This type of precipitation, which is an inherent feature of arid and semi-arid climates, has increased significantly in recent years due to global warming and the increase in climate extremes.

کلیدواژه‌ها [English]

  • Synoptic
  • Cut off Low
  • Extreme Precipitation
  • Khorasan
  1. B. Doostan.R. 2016. Atmospheric Pressure Indices and Climate of Iran. J of Geography and development. No. 45. pp. 67-92.
  2. B. 2021. Climate of Iran. Payam Noor Press. Tehran. pp. 221.
  3. H. Hesami.N. Shamohamadi. Z. 2016. Synoptic Analysis of Heavy Rainfall Caused by cut-Off Low in Bazoft Basin (Case study: Precipitation during March 8-13, 2010). J of Environment and water engineering. No.3. pp. 219-235.
  4. Q. Nabavi. S.A. Abasi.A. 2010. Synoptic analysis of time-spatial distribution of heavy rains in Razavi and Shamali Khorasan provinces. J of Geographical perspective. No. 12. pp.
  5. Q. Soltani.M. Hanafi. A. ranjbar.A. Mirzaei. A. 2011. Analyzing the effect of blocking system in creating heavy precipitations. J of Geographical research. No.4. pp. 117-148.
  6. M. Amirahmadi. A. Entezari. A. Erfani. A. 2010. Investigating the rainfall of the days of sixth and its relationship with the synoptic patterns of the atmosphere in the northeast of Iran. National conference of geographic space. Experimental approach. Environmental Management. Kharazmi University. Tehran.
  7. G. Camberlin. P. 2014. Interannual variability of rainfall in the eastern horn of Africa indicators of atmospheric circulation. J climatological. NO. 13, 5. PP. 533- 546.
  8. S. Gemmer. M. Jiang. T. 2006. Spatiotemporal analysis of precipitation trends in the Yangtze River Catchment. Stoch Environ and Res Risk Assessment.NO. 20. PP. 435- 444.
  9. T. 2000. Using Self-Organizing Maps to Investigate Extreme Climate Event: An Application to Wintertime Precipitation in the Balkans. J of Climate. NO. 13, 10. PP. 1718-1732.
  10. J.S. 1983. Classification of 500 mb Height Anomalies Using Obliquely Rotation Principal Components. Journal of applied meteorology and climatology. NO. 22, 12. PP. 1975-1988.
  11. Domroes,M. Ranatung,E. 1993 .A Statistical approach towards a regionalization of daily rainfall in Sri Lanka, Int J climatol 13, 7, 741-754‌‌ .
  12. R. 2019. An Analysis of Rainfall Changes in Iran. J of climate research. No. 40. pp. 13-25.
  13. R. 2020. Atmospheric patterns of heavy and widespread rains in South Khorasan. J of Geography and regional development. No.1. pp. 199-223.
  14. H. Noulopoulou. CH. Makrogiannis. T. Bora-Senta. E. 2007. Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. J Theor Appl Climatol. NO.87. PP. 155- 177.
  15. L. Sori. R. Vazquez. M. Stojanovic. M. Algarra. I. Eiras-Barca. J. Gimeno-Sotelo. L. Nieto. R. 2022. Extreme precipitation events. WIREs Water, e1611. https://doi.org/10.1002/wat2.1611
  16. M. Mohamadi.H. 2013. Extreme rains in South Khorasan. J of Quarterly geographical territory. No. 37. pp. 33-54.
  17. A. 2010. A Synoptic Study of Heavy Rain in Southern Regions of Bushehr Province. J of studies of human settlements planning (JSHSP). No. 10. pp. 143-157.
  18. Hamidianpour, M. Alijani. B. Sadeghi. A. 2010. Identifying the Synoptic Patterns of Heavy Precipitations in North East of Iran. J of Arid regions geographic studies. NO.1. PP. 1-16.
  19. A.h. 1394. Recognition the circulation patterns of flood generating heavy precipitations on the Fars region. J of Geographical planning of space quarterly. No. 18. pp. 31-46.
  20. M. Motalebifar. F. 2007. Study of Flood Management and Methods of Flood Damage Mitigation. J of Scientific-research quarterly of geographical data (SEPEHR). No.63. PP. 35-38.
  21. M. Khazaei. H. Saqafian. B. 1399. Climate Change Impact on Extreme Rainfalls in Arid Region of Iran. J of Environmental Science and Technology. No.9. pp. 31-42.
  22. H. Asqarpour. M. Matkan. A.l. 2008. Synoptic analysis of factors causing flooding in Golestan province. J of spatial planning. No. 2. pp. 181-211.
  23. B. 2011. Trend Analysis of annual rainfall over Iran. J of Geography and environmental planning. No. 3. pp. 95-106.
  24. H. Alijani. B. Saliqeh. M. 2015. Synopsis analysis of heavy and widespread rains in Iran. J of spatial analysis environmental hazards. No. 4. pp. 65-76.
  25. R. 2007. Regional rainfall distributions of Iran. J of Pajouhesh va sazandegi. No. 2. pp. 86-91.
  26. S.A. Ataei. H. 2005. Identification of Iran's rainy seasons by cluster analysis. J of Humanities research of Isfahan University. No. 1. pp. 1-12.
  27. A.Sadeghi. S. Doostan. R. 2013. Synoptic Analysis of Khorasan Razavi Droughts. J of geography and environmental hazards. No. 5. pp. 37-54.
  28. H. Moqbel. M. Ranjbar. F. 2010. Studying the changes of precipitation and temperature in Iran using MAGICC SCENGEN model. J of geography. No. 25. pp. 125-142.
  29. K. Safarpour. F. Mahmoodabadi. M. Olfati. S. 2010. Synopsis analysis of the effects of cutoff low in the occurrence of extreme rains in the central and southwestern regions of Iran. J of spatial planning. NO.4. PP. 161-189.
  30. H. Halabian, A.H. Saberi. H. Hosainalipour gazi. F. 2012. Investigating the Relation between Heavy Precipitation and Circulation Patterns of the Upper Atmosphere (case study: Southern Khorasan Province). J of natural environmental hazards. No. 2. pp. 11-27.
  31. H. Alijani. B. 2010. Synoptic Analysis of Intensive Daily Precipitation in the Larestan Area of Iran. J of physical geography. No. 8. pp. 17-36.
  32. M.S. 2010. Synoptic analysis of winter rainfall in the low rainfall area of east and southeast of Iran. MSc Thesis. University of Sistan and Baluchistan. Department of Natural Geography. Climatology. Supervisor: Taghi Tavousi.
  33. A. Tajbakhsh. S. M. Khashei sioki.A. Khazimeh Nejad. H. jafarzadeh. A .2017. Uncertainty analysis of temperature and precipitation variation influenced by climate change (Case Study: Southern Khorasan Province). J of Eco hydrology. NO.4. PP. 943-953.
  34. S.M. Qayour. H. Kaviani. M.R. 2007. Circulation according to the atmospheric norm and the index parameters of the action centers in the winter season over Iran. J of Humanities research of Isfahan University. No.1. pp. 85 -100.
  35. A. Nasiri Mahalati. M. Kamali. Q. 2007. Climate indices of Iran under climate change. Iranian J of field crops research. No. 1. pp. 133-142.
  36. H. Ciampittiello. M. Dresti. C. Ghiglieri. G. 2015. Assessment of Trends in Extreme Precipitation Events: A Case Study in Piedmont (North-West Italy). Water resource manage. NO. 29. PP. 63-80.
  37. I. F. Bigg. G. R. Davies. T. D. 2002. Climatology of Cyclogenesis Mechanisms in the Mediterranean. Monthly Weather Review. NO.130 (3). PP. 549-569.
  38. B .1993. Synoptic Climatology in Environmental Analysis. London: Belhaven Press.