واکاوی ارتباط گردشِ جوِخاورمیانه با دورپیوند های شمالگان (AO) و شرق اقیانوس اطلس – غرب روسیه (EA-WR) در پاییز و زمستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب و هواشناسی ، دانشگاه تهران، تهران ، ایران

2 استاد آب و هواشناسی، دانشکده جغرافیا، دانشگاه تهران، ایران

3 دانشجوی دکتری آب و هواشناسی ، دانشگاه تربیت مدرس، تهران ، ایران

چکیده

هدف از این پژوهش تحلیل ارتباط بین دور پیوندهای نوسان شمالگان (AO) و شرق اقیانوس اطلس - غرب روسیه (EA - WR) با گردش جو خاورمیانه درفصل های پاییز و زمستان می باشد.به این منظور از پایگاه NCEP/NCAR داده‌های میانگین بلندمدت ماهانه ی مولفه های دینامیکی – همدیدی شامل ارتفاع ژئوپتانسیل، فشار تراز دریا، مؤلفه باد مداری و مقدار بارش برای دو فصل پاییز (سپتامبر، اکتبر، نوامبر) و زمستان (دسامبر، ژانویه، فوریه) بین سال‌های 2020-1948 استفاده‌شد.نتایج نشان داد که نوسانات هردو دور پیوند بر آب‌وهوای خاورمیانه، به‌ویژه ایران اثر قابل‌توجهی دارد.درفصل پاییز و زمستان بین دور پیوندهای مذکور باسرعت باد مداری تراز 200 هکتوپاسکال همبستگی مثبت و با ارتفاع ژئوپتانسیل تراز میانی جو درایران و خاورمیانه همبستگی منفی مشاهده می‌شود.بنابراین افزایش مقدار هرکدام از این دورپیوندها با افزایش سرعت باد مداری تراز بالای جو و کاهش ارتفاع ژئوپتانسیل تراز میانی جو در فصول پاییز و زمستان همراه است. بنابراین سبب تقویت و جابه جایی جنوب سوی جت جنب حاره ای همچنین شکل گیری سیستم های مانع قدرتمند (بندال امگا) برروی روسیه و شرق اروپا در وردسپهر میانی و نفوذ ناوه ارتفاع ژئوپتانسیلی بازوی شرقی این بندال به عرض های پایین تر واقع درخاورمیانه و بیشتر مناطق ایران می شود، که این شرایط در فصل زمستان با قدرت و نمود بیشتری در جو خاورمیانه و ایران برقرار می‌باشد.در پاییز یک هسته ی بیشینه ی همبستگی مثبت بین بارش وهردو دور پیوند در راستای زاگرس تا البرز مرکزی و شمال ایران مشاهده می شود.در فصل زمستان بین بارش و دور پیوند شرق اطلس - غرب روسیه زاگرس مرکزی تا البرز مرکزی همبستگی مثبت و بین بارش و دور پیوند نوسان شمالگان در مناطق شمال غرب و شرق کشور همبستگی منفی مشاهده می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing the relationship between the Middle East atmospheric circulation with teleconnections Arctic oscillation (AO) and East Atlantic Ocean-West Russia (EA-WR) in autumn and winter

نویسندگان [English]

  • hosein koshky 1
  • Ghasem Azizi 2
  • hasan hajimohammadi 3
1 Ph.D. candidate of Climatology, University of Tehran, Tehran, Iran
2 Department of Physical Geography, University of Tehran
3 PhD student of Synoptic Climatology, Faculty of Literature and Humanities Geography ,University Tarbiat Modares, Tehran , Iran
چکیده [English]

Introduction

Identifying the patterns of the teleconnection and analyzing their effects on the dynamic components and circulation patterns of the atmosphere can be useful for better understanding and knowledge of climate systems and consequently their prediction (Mueller and Ambrizi, 2007). The Arctic Oscillation (AO) and the East Atlantic–West Russia teleconnection (EA–WR)are among the most important teleconnection in the Northern Hemisphere. The Arctic Oscillation is actually the anomaly of atmospheric pressure at the sea level in the north polar latitudes (55°N) and middle latitudes (45°N latitude), which was first discovered by two scientists named Thomson and Wallace in 1998 It was proposed as the main reason for the variability of the Subtropical regions of the Northern Hemisphere. In the positive phase of this index, the polar convection is stronger than normal and the jet at the top of the atmosphere is strengthened and moves in the form of a ring of strong westerly winds from around the North Pole, and this causes colder air to be limited in the polar regions. As a result, in this phase, the western winds are strengthened in the North Atlantic area and create warmer and more humid conditions than usual in Northern Europe. In the negative phase, the polar vortex ring and the upper level jet of the atmosphere take a meridional pattern and the western winds move towards lower latitudes (middle latitudes). Also, in this phase, the western winds are weakened in the northern part of the Atlantic and can penetrate to the areas located at low latitudes including southern Europe, the Mediterranean and the Middle East.East Atlantic-West Russia teleconnection EA-WR is obtained from the standardized pressure difference or geopotential height of East Atlantic Ocean from West Russia.This teleconnection was presented for the first time by Branston and Livesey (1987) using the method of principal components analysis in the form of a pattern of monthly changes in geopotential height of 700 hectopascals. This pattern includes four main centers of negative geopotential height anomaly along the orbits from the Atlantic Ocean to China. In the negative phase, this is reversed. In the negative (positive) phase, climate conditions are often drier (more humid) than the average situation over a large part of the Mediterranean region (Krichak et al., 2002).



Materials and methods

To investigate the mechanism of the Arctic Oscillation (AO) and the East Atlantic/West Russia Oscillation (EA-WR) in relation to the atmospheric circulation of the Middle East and Iran in two seasons: autumn (September, October, November) and winter (December, January, February), National Center for Environmental Prediction/Atmospheric Sciences (NCEP/NCAR) gridded data were used. The reason for using data with a spatial resolution of 2.5*2.5 degrees is that they are suitable for studying low-frequency phenomena on a planetary scale (Mohab al-Hajjah et al., 2015). Based on the purpose of the research, the data of geopotential height, sea level pressure, orbital component of wind and amount of precipitation for two seasons of winter (December, January, February) and autumn (September, October, November) were obtained between 1948-2020. Due to the importance of the level conditions of 200 and 500 hectopascals on the dynamic components of lower levels (Standel et al., 2021), these atmospheric levels were selected for investigation and analysis. After receiving the mentioned data and extracting the time series of these data, the map of the desired dynamic components was drawn and analyzed.Then the correlation maps between the mentioned teleconnection with parameters of geopotential height of 500 hectopascals, orbital wind component of 200 hectopascals, sea level pressure and precipitation amount In order to determine the long-term relationship of these links with the dynamic components - synoptic and precipitation of the region in the cold period of the year, it was drawn.

Results and Discussion

The pattern of correlation values between the meridinal wind speed level of 200 hPa and the AO teleconnection in the autumn season showed that a Rayleigh-shaped positive correlation line was drawn in the direction of the meridinals from the United States of America, the Atlantic Ocean, North Africa to the east of Iran.Both teleconnection have a strong positive correlation with the meridinal wind speed of 200 hectopascals in autumn and winter, Which means that, with the increase in the value of each of them in the autumn season, along with the increase in the meridinal wind speed, the tropical jet stream first has an meridinal - wave pattern in the direction of the Atlantic Ocean, north and East Africa, the Red Sea, and then it is formed by changing the shape with a meridian pattern from Iran to the west of Russia. Almost along the same path, there is a negative correlation between the mentioned teleconnections and the geopotential height of the middle level of the atmosphere in the two seasons of autumn and winter. By increasing the value of each of the mentioned links, the value of the geopotential height of the middle level decreases from the northwest side of Iran to the north of the Red Sea and the east of the Mediterranean, which indicates the penetration of cold polar air through the west of Russia to the areas located throughout the western half. and the northwest of Iran.

Conclusion

The results showed that the fluctuations of both teleconnections have a significant effect on the climate of the Middle East, especially Iran. In autumn and winter season, there is a positive correlation between the above-mentioned teleconnections with the meridinal wind speed of 200 hectopascals and a negative correlation with the geopotential height of the middle atmosphere in Iran and the Middle East. Therefore, the increase in the value of each of these teleconnections is associated with an increase in the meridinal wind speed at the upper level of the atmosphere and a decrease in the geopotential height of the middle level of the atmosphere in autumn and winter seasons. The East Atlas-West Russia teleconnections affects a wider area of Iran in autumn and winter.



Keywords Geopotential height, Iran, Anomaly, Correlation ،Meridinal Wind

کلیدواژه‌ها [English]

  • Geopotential height؛ Iran؛ Anomaly؛ teleconnection
  • Meridinal Wind
  1. Alijani, B., & Doostan, R. (2013). Identifying the controlling centers of the climate of Iran and their pressure patterns in the 500 hPa. Level during cold period of the year. Journal of Geography and Regional Development, 10(2). Doi: 10.22067/geography.v0i0.23259
  2. AMAP (Arctic Monitoring and Assessment Program) (2012) Changes in Arctic snow, water, ice and permafrost. SWIPA 2011 Overview Report. Arctic Climate Issues 2011.
  3. Barnston, A. G. & Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly weather review, 115(6), 1083-1126.
  4. Darand M, Rahmani H. Analysis the Impact of Climatic Signals on Kurdistan Precipitations272-249: (63) 18. 2018.
  5. Dostan, Reza (2017). Global teleconnection and regional teleconnection of Iran. Journal of Earth and Space Physics, 44(3), 625-640.
  6. Farajzadeh, M., Ahmadi, M., Alijani, B., Qavidel Rahimi, Y., Mofidi, A., & Babaeian, I. (2013). Study on Variation of Major Teleconnection Patterns (MTP) associated with Iran’s Precipitatio. Journal of Climate Research, 1392(15), 31-45.
  7. Feldstein, S. B. & Dayan, U. (2008). Circumglobal teleconnections and wave packets associated with Israeli winter precipitation. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 134(631), 455-467.
  8. Gong, D. Y., & Ho, C. H. (2002).The Siberian High and climate change over middle to high latitude Asia. Theoretical and applied climatology, 72(1), 1-9.
  9. Halabian, A., Karampour, M., Mahmoodimehr, F. (2021). Relationship of Arctic Oscillation (AO) and winter temperatures variability on the north- west Iran. Journal of Climate Research, 1400(47), 121-140.
  10. Hasanean, H. M. (2004). Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(8), 985-999.
  11. Krichak, S. O. & Alpert, P. (2005). Decadal trends in the east Atlantic–west Russia pattern and Mediterranean precipitation. International journal of climatology: a journal of the Royal Meteorological Society, 25(2), 183-192.
  12. Krichak, S. O. Kishcha, P. & Alpert, P. (2002). Decadal trends of main Eurasian oscillations and the Eastern Mediterranean precipitation. Theoretical and Applied Climatology, 72(3), 209-220.
  13. Maghsoudi-Fallah, M., Ahmadi-Givi, F., Mohebalhojeh, A., & Nasr-Esfahany, M. (2016). The impact of the East Atlantic–West Russia (EA–WR) teleconnection pattern on tropospheric low-frequency variability in Southwest Asia. Iranian Journal of Geophysics, 10(3), 25-39.
  14. Müller, G. V. & Ambrizzi, T. (2007). Teleconnection patterns and Rossby wave propagation associated to generalized frosts over southern South America. Climate Dynamics, 29(6), 633-645.
  15. Nissen, K. M. Leckebusch, G. C. Pinto, J. G. Renggli, D. Ulbrich, S. & Ulbrich, U. (2010). Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Natural Hazards and Earth System Sciences, 10(7), 1379-1391.
  16. Omarid, Kamal; Jafari Nadushan; Mehdi. (2016).The effect of polar oscillation on temperature and precipitation changes in the cold seasons of the year in central Iran. Geographical Sciences (Applied Geography), 13(26), 19-30.
  17. Omidvar, Kamal (2019), Atmosphere and Ocean Climate Relationship, Yazd University Press, Yazd.
  18. Quadrelli, R. Pavan, V& Molteni, F. (2001).Wintertime variability of Mediterranean precipitation and its links with large-scale circulation anomalies. Climate Dynamics, 17(5), 457-466.
  19. Rigor, I. G. Colony, R. L. & Martin, S. (2000). Variations in surface air temperature observations in the Arctic, 1979–97. Journal of Climate, 13(5), 896-914.
  20. Stendel, M. Francis, J. White, R.Williams, P. D.Woollings, (2021). The jet stream and climate change. In Climate Change (pp. 327-357). Elsevier.
  21. Thompson, D. W. & Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical research letters, 25(9), 1297-1300.
  22. Trenberth, K. E. Branstator, G. W. Karoly, D. Kumar, A. Lau, N. C. & Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research: Oceans, 103(C7), 14291-14324.

 

  1. Trigo, R. Xoplaki, E. Zorita, E. Luterbacher, J. Krichak, S. O. Alpert, P & Mariotti, A. (2006). Relations between variability in the Mediterranean region and mid-latitude variability.In Developments in Earth and Environmental Sciences (Vol. 4, pp. 179-226).

Yarahmadi, Azizi, Ghasem (2008). Multivariate Analysis of Relationship between Seasonal Rainfalls in Iran with Climate Indices. Georaphical Research Quarterly.