ارتباط شاخص‌های پیوند از دور با ناهنجاری‌های دمایی، بارشی و باد استان مازندران در نیمه دوم سال (اکتبر تا مارس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد آب و هواشناسی دانشگاه مازندران، بابلسر

2 دانشیار آب و هواشناسی دانشگاه مازندران، بابلسر

چکیده

هدف از این پژوهش بررسی ارتباط ناهنجاری‌‌‌های دما، بارش و باد مازندران با شاخص‌های پیوند از دور است. به‌ این منظور از داده‌های 4 ایستگاه رامسر، نوشهر، بابلسر و قراخیل قائم‌شهر در برهه زمانی 1984 –2020 استفاده شد. با استفاده از روش رگرسیون چندمتغیره، به بررسی روابط میان شاخص‌های پیوند از دور با ناهنجاری‌‌‌های پارامترهای آب‌وهوایی پرداخته شد. روش به کار گرفته‌شده از نوع پس‌‌رو (Backward) است. در این پژوهش از چهار گام زمانی ماهانه، هم‌زمان، یک ماه جلوتر، دو ماه جلوتر و سه ماه جلوتر استفاده شد. برای تک‌تک ماه‌‌ها ناهنجاری دما، بارش و باد در دو مرحله، در ابتدا با استفاده از مقدار (Z) بیشتر از 0.5 و کمتر از 0.5- و در ادامه با اعمال روش صدک 90 و 10 استخراج شد. میزان کار آیی روابط به‌دست‌آمده از طریق RMSE محاسبه شدند. کمترین RMSE با مقدار 0.81 و میزان خطای استاندارد 0.85 مختص پارامتر باد در گام زمانی ماه هم‌زمان و از روش اول (0.5<Z<0.5-) می‌باشد که تغییرات آن رابطه معکوس با شاخص CAR (شاخص دمای سطحی کارائیب) و رابطه مستقیم با شاخص‌های SOI (شاخص نوسانات جنوبی)، AMO (نوسانات دهه‌ای اقیانوس اطلس) و PWP (استخر گرم اقیانوس آرام) دارد. میانگین ضرایب همبستگی گام‌های زمانی مختلف برای داده‌های خروجی روش اول (ناهنجاری متوسط تا بسیار شدید) برای باد 0.72، دما 0.57 و بارش 0.49 و در روش دوم (ناهنجاری بسیار شدید) برای بارش 0.97، باد 0.86 و دما 0.68 می‌باشد. شاخص‌های AMO، GLBT.s (میانگین جهانی دمای زمین / اقیانوس) و SOI مهم‌ترین شاخص‌های اقیانوسی این پژوهش در فصل سرد مازندران هستند. با توجه به روند تغییرات مشاهده‌شده، ارتباط چشمگیری بین تغییر فاز دوره‌ای شاخص AMO با پارامتر باد مازندران وجود دارد؛ به‌طوری‌که ضریب همبستگی بین این دو 0.7 می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The relationship between Teleconnection indicators and temperature, precipitation and wind anomalies in Mazandaran in the second half of the year (October to March)

نویسندگان [English]

  • Iman Falahatpisheh 1
  • Yadollah Yousefi 2
  • hematollah roradeh 2
1 Geography, Climatology Faculty of Humanities and Social Sciences, Mazandaran University, Babolsar, Iran
2 Geography, Climatology Faculty of Humanities and Social Sciences, Mazandaran University, Babolsar, Iran
چکیده [English]

Abstract:

Introduction: Identifying the teleconnection patterns and analyzing their effects on the horizontal structure of circulation patterns can be useful for better recognition and understanding of anomalous climatic events. Temperature, precipitation, and wind, which are the main factors in weather and climatology classifications, are among the parameters whose abnormal increase or decrease can cause irreparable harm and damage to humans, and predicting the abnormalities of these factors can be useful. The teleconnection is as the name suggests; In fact, it deals with the relationship of different climatic parameters in different parts of the world. A significant part of the damages caused by climatic hazards is related to hot and cold waves, destructive floods and violent storms. The term teleconnection is often used in atmospheric science to describe climate links between geographically separated regions. Climatic signals that express changes in temperature and air pressure in the oceans are considered one of the most influential parameters on a global scale on weather patterns, especially precipitation, considering the effect of large-scale climatic factors on extreme events, by examining the effect of these signals on the accuracy of monitoring and forecasting. Floods increase. Atmospheric circulations are very variable. In general, the occurrence of extreme atmospheric-climatic phenomena such as heavy rains and sudden changes have the largest scope of damage to water resources, agriculture and even people's daily life. Having the necessary knowledge of the extent of these phenomena, changes and their prediction will be of great help for more accurate planning in different watersheds, which will reduce the negative effects caused by the occurrence of these phenomena and benefit from their positive effects. These changes lead to the emergence of weather patterns and forms of atmospheric currents that occur on different time scales. teleconnection patterns represent large-scale changes that occur in the pattern of atmospheric waves and rivers and affect the pattern of temperature, precipitation, the path of showers and especially the performance of remote climates in vast territories. During the El Nino-Frein event, the positive sea surface temperature anomalies are more intense in the tropical eastern Pacific Ocean, which causes a significant reduction in the sea surface temperature gradient and, as a result, the weakening of the easterly winds between the tropical eastern and western Pacific Ocean. The purpose of this research is to investigate the relationship between temperature, precipitation and wind anomalies in Mazandaran with Teleconnection indicators. For this purpose, the data of 4 stations of Ramsar, Nowshahr, Babolsar and Qarakhil Qaimshahr were used in the period of 1984-2020. Teleconnection indicators data were obtained from the National Oceanic and Atmospheric Administration (NOAA).

Materials and methods: Using the multivariate regression method, the relationships between Teleconnection indices and weather parameter anomalies were investigated. The method used is the backward type, in which all predictor variables that were selected according to the highest correlation coefficient are first entered into the equation and those with lower confidence coefficients are removed one by one from the model. In this research, four-time steps were used: monthly, simultaneous, one month ahead, two months ahead and three months ahead. In most of the indices, which are less related to the surface temperature of the oceans and are subject to pressure changes, the correlation coefficient was often accompanied by a decrease with the increase of the time period. For each month, temperature, precipitation and wind anomalies were extracted in two stages, first by using the (Z) value greater than 0.5 and less than -0.5, and then by applying the 90th and 10th percentile methods. The efficiency of the relationships obtained was calculated through RMSE.

Results and discussion: The lowest RMSE with a value of 0.81 and a standard error of 0.85 is specific to the wind parameter in the time step of the same month and from the first method (0.5<Z<-0.5) whose changes have a negative relationship with the CAR index (Caribbean SST Index) and a positive relationship with the indices It has SOI (Southern Oscillation Index), AMO (Atlantic multidecadal Oscillation) and PWP (Warm Pool Pacific). The average correlation coefficients of different time steps for the output data of the first method (moderate to very severe anomaly) are 0.72 for wind, temperature 0.57 and precipitation 0.49 and in the second method (very severe anomaly) for precipitation 0.97, wind 0.86 and temperature 0.68.

Conclusion: AMO, GLBT.s (Global Mean Lan/Ocean Temperature) and SOI indices are the most important oceanic indices of this research in the cold season of Mazandaran. According to the observed changes, there is a significant relationship between the periodic phase change of the AMO index and the Mazandaran wind parameter; So, the correlation coefficient between these two is 0.7.

Keywords: Multivariate regression, Teleconnection, anomaly, temperature, precipitation, wind, Mazandaran

کلیدواژه‌ها [English]

  • Teleconnection
  • anomaly
  • regression
  • multivariate
  • Mazandaran
  1. Alijani B. )2002) .Synoptic Climatology, SAMT publisher
  2. Alijani, B. (2018). Quantitative methodology in geography, p. 123, Tehran, Samit publications.
  3. Becker, S., Hartmann, H., Coulibaly, M., Zhang, Q & Jiang, T. (2008). Quasi periodicities of extreme precipitation vents in the Yangtze River basin, China. Theoretical and applied climatology, 94(3), 139-152.
  4. Cai, W., Whetton, P.H., & Pittock, A.B., 2001. Fluctuations of the relat ionship between ENSO and northeast Australian rainfall. Climate Dynamics, 17, 421-432.
  5. Di Capua, G., Kretschmer, M., Donner, R. V., van den Hurk, B., Vellore, R., Krishnan, R & Coumou, D (2019). Tropical and mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: A Theory-Guided Causal Effect Network approach. Earth System Dynamics Discussions, 1-27.
  6. Folland, C.K., Knight, J., Linderholm, H.W., Fereday, D., Ineson, S., and Hurrell, J.W. (2009). The Summer North Atlantic Oscillation: Past, Present, and Future, Journal of Climate, 22(5), 1082- 1103. Retrieved Jan 24, 2021.
  7. García-Franco, J. L., Gray, L. J., Osprey, S., Chadwick, R & Martin, Z (2022). The tropical route of QBO teleconnections in a climate model. Weather and Climate Dynamics Discussions, 1-27.
  8. Gray, A., & Ghanghermeh, A. (2021). Assessment of precipitation and temperature for the future period on the southern shores of the Caspian Sea based on the development and generalization of the NCP index. Climate Change Research, 2(8), 1-22.
  9. Ghasemi, A. R. (2020). Influence of northwest Indian Ocean sea surface temperature and El Niño–Southern Oscillation on the winter precipitation in Iran. Journal of Water and Climate Change, 11(4), 1481-1494.
  10. GhvidelRahimi, Y, Farajzadeh, M, Kakapour, S, 2014, Study the affecting of North Sea – Caspian pattern on autumn rainfall fluctuations in the West and Northwest regions of Iran. Journal of the Saudi Society of Agricultural Sciences, 14(1): 33-40
  11. Halabian, A., Karampour, M., & Mahmoodimehr, F. (2021). Relationship of Arctic Oscillation (AO) and winter temperatures variability on the north- west Iran. Journal of Climate Research, 1400(47), 121-140.
  12. Heidari, I., Gandomkar, A., & Bagheri, M. (2017). Study of Relationship between North Atlantic Teleconnections and Air Temperature in Caspian Sea Basin.. Journal of Geography and Environmental Studies, 5(20), 139-147.
  13. Heidari, M. A., & Khoshaghlagh, F. (2017). Modeling the Relationship between teleconnection indexes with warm season temperature anomalies in Iran Using Multivariate Regression. Journal of Geography and Environmental Hazards, 6(3), 47-66.
  14. Helali, J., Hosseinzahef, T., Cheraghalizadeh, M., & Mohammadi Ghalenei, M. (2021). Feasibility study of using Climate Teleconnection Indices in prediction of spring precipitation in Iran Basins. Iranian Journal of Soil and Water Research, 52(3), 749-769.
  15. Helali, J., Pishdad, E., Alidadi, M., Loukzadeh, S., Asadi Oskouei, E., & Norooz Valashedi, R. (2020). Investigating the relationship between climate Teleconnection Indices and Autumnal Rainfall in Iran Watersheds. Iranian Journal of Soil and Water Research, 51(8), 1921-1936.
  16. john C., & Chiang, H., 2002. Tropical tropospheric temperature variat ions caused by ENSO and their influence on the remote tropical climate. Journal of Climate, 105, 16-26.
  17. Khosravi, M. (2002). Enso phenomenon (ENSO) and climate variability of Southeast Iran. Climatology doctoral thesis. Faculty of Literature and Human Sciences, University of Isfahan.
  18. Khosravi, M. (2016). Multivariate climatology: application of multivariate analyzes in natural geography and climatology, Zahedan, University of Sistan and Baluchistan.
  19. Kutiel, H., Maheras, P., Tulkes M., & Paz, S., 2002. North Sea-Caspian Pattern(NCP)an Upper Level Atmospheric Teleconection Affecting the Eastern Mediterranean Implications on the Regional Climate. Theoretical and Applied Climatology. 52, 101-115.
  20. mahmoodabadi M, omidvar K, mozafari G, mazidi A. Assessment of Teleconnection Patterns Affecting Rainfall Extreme Indices(Case Study: Sistan-Baluchestan Province) . jwmr 2018; 9 (17) :280-294
  21. Nazemosadat, M. J., & Cordery, I. (2000). On the relationships between ENSO and autumn rainfall in Iran. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(1), 47-61.
  22. Pazhoh F. (2017) .Patterns of Teleconnection and its role in climate changes in Iran, AsarFekr publisher
  23. Riaz, Syed M.F., Iqbal, M.J., Hameed, Sultan (1 January 2017). "Impact of the North Atlantic Oscillation on winter climate of Germany". Tellus A: Dynamic Meteorology and Oceanography. 69 (1): 1406263.
  24. Robert H., & Niebauer, H.J., 1999. Causes of Interannual Variability in the Sea Ice Core of the Eastern Bring Sea. Institute of Marine Science, 22, 250-263.
  25. Saligheh, M., Bayat, A., Bayat, A., & doostkamian, M. (2013). Teleconnection relationship between North Atlantic Oscilation (NAO) with Fars province droughts. Geographic Thought, 7(13), 63-83.Salahi, B., and Hajizadeh, Z. (2012). An analysis on the temporal relationship of the North Atlantic Oscillation and the surface temperature indices of the Atlantic Ocean with the variability of precipitation and temperature in Lorestan province.‎
  26. Spatial and temporal variability of precipitation and wet-dry spells in southern areas of Caspian Sea. (2016). Researches in Earth Sciences, 7(1), 16-30.
  27. Tang B.H., & Neelin, J.D., 2004. ENSO influence on Atlantic hurricanes via tropospheric warming. Geophysical Research Letters, 31, 204-230.
  28. Toloei, Y., Gandomkar, A., & Bagheri Badaghabadi, M. (2021). Investigating the Relationship between Northern Hemisphere Transplant Patterns and Drought in Northwestern Iran. Physical Geography Quarterly, 14(Physical Geography Quarterly), 55-74.
  29. Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C ... & Xoplaki, E (2001). North Atlantic Oscillation–concepts and studies. Surveys in geophysics, 22(4), 321-381.
  30. Yang, R & Xing, B (2022). Teleconnections of Large-Scale Climate Patterns to Regional Drought in Mid-Latitudes: A Case Study in Xinjiang, China. Atmosphere, 13(2), 230.
  31. Yeh, S. W., Cai, W., Min, S. K., McPhaden, M. J., Dommenget, D., Dewitte, B & Kug, J. S (2018). ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Reviews of Geophysics, 56(1), 185-206.

 

  1. Zaroug, M. A. H., Giorgi, F., Coppola, E., Abdo, G. M., & Eltahir, E. A. (2014). Simulating the connections of ENSO and the rainfall regime of East Africa and the upper Blue Nile region using a climate model of the Tropics. Hydrology and Earth System Sciences, 18(11), 4311-4323.
  2. Zolghadr-Shojaee, M., Alizadeh Choobari, O., Irannejad, P., & Ahmadi Givi, F. (2020). Characteristics and Teleconnections of the Extreme Eastern and Central Pacific and Mixed El Niños. Physical Geography Research Quarterly, 52(1), 65-84.