پیشنگری تبخیر - تعرق پتانسیل بر اساس سناریوهای واداشت تابشی (مطالعه موردی: تبریز)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 محقق، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج

2 دانشیار پژوهشی، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج.

3 دانش‌آموخته دکتری، گروه جغرافیا، دانشکده علوم اجتماعی، دانشگاه حکیم سبزواری، سبزوار

4 استادیار پژوهشی، پژوهشکده اقلیم‌شناسی و تغییر اقلیم، پژوهشگاه هواشناسی و علوم جو، مشهد.

چکیده

تبخیر – تعرق از بخشهای مهم چرخه هیدرولوژی بوده و تعیین دقیق مقدار آبی که برای تبخیر و تعرق مصرف میشود، از عوامل اساسی در برنامهریزی برای رسیدن به محصول بیشتر و از مهمترین پارامترهای مدیریت آب در گیاهان است. پژوهش حاضر با هدف پیش بینی تبخیر - تعرق پتانسیل ایستگاه تبریز به عنوان پاسخی به تغییرات اقلیمی انجام شد. به این منظور روش پنمن مانتیث به عنوان الگوریتم معیار برای برآورد تبخیر - تعرق پتانسیل در دوره زمانی پایه (2005-1991) استفاده بکار رفت. تبخیر- تعرق پتانسیل در دوره 2100-2025 با استفاده از سناریوهای 2.6 RCP، 4.5 RCP و 8.5 RCP بر اساس مدل های CMIP5 (1.1 BCC-CSM و CCSM4) و مدل LARS-WG6 برآورد شد. در نهایت با استفاده از شاخص‍های آماری اعتبار سنجی بررسی توانمندی مدل LARS-WGطی دوره پایه با مقادیر مشاهداتی طی دوره پایه (1991-2005) ارزیابی شد. همچنین برای بدست آوردن ارزیابی کلی کیفیت برآورد‌ها از منحنی امتیاز مهارتی ROC استفاده شد. ارزیابی عملکرد میانگین دو مدل نشان داد که برای ماه‌های گرم سال، مدل قابلیت بهتری در برآورد میزان تبخیر- تعرق پتانسیل در مقایسه با ماه‌های سرد داشته و کمترین خطای RMSE در ماه‌های گرم بوده است، به‌طوری که در ماه ژانویه با مقدار 15/0 میلی‌متر کمترین مقدار خطا را داشت. در مقایسه ماه ها نیز نتایج حاکی از بهترین میزان برآورد دو ماه فوریه و اوت در برآورد مقادیر سالانه تبخیر- تعرق بود. همین طور نتایج نشان داد که در تمامی دوره های آتی و تحت تمامی سناریوها، میانگین تبخیر و تعرق مرجع در مقیاس‌های سالانه در مقایسه با دوره پایه افزایش معنی داری در سطح 01/0 خواهد داشت. همچنین نمودار مشخصه عملکرد مهارتی نتایج قابل قبولی را از پیش بینی های دو مدل تبخیر تعرق پتانسیل نشان داد. نتایج میانگین دو مدل بیانگر افزایش تبخیر – تعرق پتانسیل پیش بینی شده تحت سناریوهای RCP بود.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of Potential Evaporation and Transpiration under Radiative Forcing Scenarios )Case Study: Tabriz(

نویسندگان [English]

  • Mansour Chatrenour 1
  • Mirnaser Navidi 2
  • Naser Davatgar 3
  • nasrin moradimajd 2
  • Ebrahim Asadi Oskouei 4
  • Bahare Delsooz Khaki 1
1 soil and water research institute
2 soil and water reserch institue
3 soil and water research institute
4 Faculty member of atmospheric science research center
چکیده [English]

Considering the phenomenon of climate change and subsequent changes in plant water requirements, it is crucial to recognize and estimate climate change in the coming decades with the aim of proper environmental planning to adapt to future climate conditions and reduce its effects. The main factor in the consumption of water resources in arid and semi-arid areas is agriculture and, accordingly, evaporation-transpiration, therefore, awareness of the process of changes and its prediction plays an effective role in planning, development, and water resources management. Since evaporation-transpiration accounts for an important part of the water balance of arid and semi-arid regions, its correct estimation is very important in the optimal preservation of water resources. On the other hand, knowledge of evaporation-transpiration process is necessary to estimate plant water consumption and design irrigation systems. According to the conducted research, estimation of evapotranspiration in the present and future periods is one of the basic needs of development managers, therefore, this research aims to evaluate the evapotranspiration potential in the base period (1991-2005), and predict temperature changes, using 3 scenarios (RCP2.6, RCP4.5, and RCP8.5) and evapotranspiration based on CMIP5 models (1.1 BCC-CSM and CCSM4) in the 75 year period (2025-2100) was carried out in Tabriz city.

Materials and methods: For this purpose, the Penman-Monteith method was used as a standard algorithm to estimate potential evaporation and transpiration in the basic period (1991-2005). Then, potential evaporation and transpiration in the period of 2025 to 2100 were estimated using 2.6 RCP, 4.5 RCP, and 8.5 RCP scenarios and the LARS-WG6 model. Finally, the predicted values of evaporation and transpiration in future periods were predicted using the statistical indicators and the calculated evaporation and transpiration values for the base period (1991-2005). The ROC skill score curve also was used in order to general assessment of the quality of the estimations.

Results and discussion: The results showed an increase in the predicted potential evaporation and transpiration under the RCP scenarios. In all three scenarios, the highest amount of evaporation-transpiration was obtained in July and the lowest amount was obtained in December.

Moreover, an increase in the predicted transpiration evaporation was observed in July, August, January and February, compared to the base period. In addition, a decrease in the predicted transpiration evaporation was obtained in November and December, compared to the base period. In the RCP 8.5 scenario, the difference was much higher than in the base period. The evaluation of the model performance showed that for the hot months of the year, the model had a better ability to estimate the amount of potential evaporation-transpiration compared to the cold months, and the lowest RMSE error was in the hot months, so that in January with a value of 0.15 mm, the lowest value Dara showed the error. A comparison between the months indicated the two months of February and August as the best estimation for the estimation of annual evapotranspiration values. Likewise, the results showed that in all future periods and under all scenarios, the average reference evaporation and transpiration in annual scales will increase significantly at the level of 0.01 compared to the base period. The verification results also showed an acceptable ability for the predictions of the potential transpiration evaporation model.

Conclusion: This research amed at investigation of the amount of reference evapotranspiration changes based on RCP radiative forcing scenarios and climate models from 2025 to 2100 in Tabriz. The obtained results indicate the increase of reference evapotranspiration in all RCP scenarios for each of the future periods. In addition, the highest percentage of the reference evapotranspiration changes in the 8.5 RCP scenario is more than other scenarios because this scenario predicts the worst climate conditions and obvious changes in evapotranspiration will occur. The results of this research can be beneficial to solve the challenges of managers and relevant officials in the future periods. Considering this, the water, environment and health sector planners should adopt the necessary solutions for adaptation and reducing the consequences. Reasonable use of water resources is inevitable under the conditions of warming weather in Tabriz. Increasing evaporation and creating important changes in the quality and quantity of water resources, consequently changes in the quantity and quality of agricultural products. This situation determines the necessity of planning changes in the exploitation of water resources and agriculture. The future plans should be such that the upcoming changes have less harmful effects on the water and agriculture sector in this region. It is necessary to consider measures to improve the irrigation system, reduce evaporation, reuse wastewater and improve the cultivation pattern.

کلیدواژه‌ها [English]

  • Potential Evapotranspiration
  • Radiative Forcing Scenario
  • Skill Score
  • Tabriz
  • CMIP5
  1. Ahmadi, H., Fallah Ghalhari, G., Baaghideh, M., Amiri, M. E. (2018). Investigating the effects of climate change on the pattern of heat accumulation in apple trees cultivation areas in Iran during the future period. Journal of Spatial Analysis Environmental hazarts, 5(2), 35-54.
  2. Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  3. Arfa A, Khashei siuki A, hamidianpoor M. (2021). The effect of climate change on evapotranspiration in warm and humid conditions (Case study: South and Southeast of Iran). Journal of Rainwater Catchment Systems, 8 (4) :37-50.
  4. Asakere, H. , Akbarzadeh, Y. 2017. Simulation of temperature and precipitation changes of Tabriz synoptic station using SDSM statistical microscale and CanESM2 model output,. Journal of Geography and Environmental Hazards, 6(1), 153-174.
  5. Askari, S. 2019. Possible effects of climate change on the minimum temperature trend of Zanjan in the past and future climate under radiative forcing (RCP) scenarios, the 5th International Conference on New Horizons in Agricultural Sciences, Natural Resources and Environment, Tehran.
  6. Askari, S. Ghahraman, N. , Babaiyan, A. 2016. Quantitative forecasting of possible effects of climate change on thermal index (THI) under radiative forcing (RCP) scenarios in Iran.Journal of Climate Research, 1396(31), 1-18.
  7. Babaeian, I., Kwon, W. T., Im, E. S. (2004). Application of weather generator technique for climate change assessment over Korea. Meteorological Research Institute. Climate Research Lab., 98pp.
  8. Babolhekami, A., Gholami Sefidkouhi, M. A., Emadi, A. (2020). The Impact of Climate Change on Reference Evapotranspiration in Mazandaran Province. Iranian Journal of Soil and Water Research, 51(2), 387-401.
  9. Buizza, R., Palmer, T. N. (1998). Impact of ensemble size on ensemble prediction. Monthly Weather Review, 126(9), 2503-2518.
  10. Chaumont, D. (2014). A guidebook on climate scenarios: Using climate information to guide adaptation research and decisions. Ouranos: Montréal, QC, Canada.
  11. Dascălu, S. I., Gothard, M., Bojariu, R., Birsan, M. V., Cică, R., Vintilă, R., Adler, M.J., Chendeș, V., Mic, R. P. (2016). Drought-related variables over the Bârlad basin (Eastern Romania) under climate change.
  12. Demirel, M. C., Moradkhani, H. (2016). Assessing the impact of CMIP5 climate multi-modeling on estimating the precipitation seasonality and timing. Climatic change, 135(2), 357-372.
  13. Duko, C., Zwart, S. J., Hein, L. (2018). Impact of climate change on cropping pattern in a tropical, sub tropical watershed. PoloS ONE, 13(3), 1-21.
  14. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958.
  15. Hafezparast, M., Pourkheirolah, Z. (2017). Meteorological drought monitoring in order to sustainability in RCP scenarios Case study: Doiraj watershed. Iranian journal of Ecohydrology, 4(4), 1227-1239.
  16. Hafezparast, M., Pourkheirollah, Z. (2018). The effect of RCP scenarios on hydrological parameters, case study: Doiraj Dam catchment. Watershed Engineering and Management, 10(2), 231-248. 
  17. Hoseini Tabesh, S., Aghashariatmadari, Z. (2020). The Effect of Climate Change on Rice Irrigation Requirement under RCP Scenarios (Case Study: Anzali). Iranian Journal of Soil and Water Research, 51(10), 2607-2621.
  18. Huang, Y. F., Ang, J. T., Tiong, Y. J., Mirzaei, M., Amin, M. Z. M. (2016). Drought forecasting using SPI and EDI under RCP-8.5 climate change scenarios for Langat River Basin, Malaysia. Procedia Engineering, 154, 710-717.
  19. Joorabloo, S., Azhdary, K., Ganji, Z., Delghandi, M. (2018). Climate Change Impact on Reference Evapotranspiration and Precipitation Deficit in Semnan Region. Irrigation Sciences and Engineering, 41(4), 61-75.
  20. Mason, S. J., Graham, N. E. (1999). Conditional probabilities, relative operating characteristics, and relative operating levels. Weather and Forecasting, 14(5), 713-725.
  21. Masoompour Samakosh, J., miri, M., purkamar, F. (2018). Assessment of CMIP5 climate models with observed precipitation in Iran. Iranian Journal of Geophysics, 11(4), 40-53.
  22. McMahon, T. A., Peel, M. C., Karoly, D. J. (2015). Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation. Hydrology and Earth System Sciences, 19(1), 361-377.
  23. Mirakbari, M., Mesbahzadeh, T., Mohseni Saravi, M., Khosravi, H., Mortezaie Farizhendi, G. (2018). Performance of Series Model CMIP5 in Simulation and Projection of Climatic Variables of Rainfall, Temperature and Wind Speed (Case Study: Yazd). Physical Geography Research Quarterly, 50(3), 593-609.
  24. Pachauri, R. K., Meyer, L. A., Plattner, G. K., Stocker, T. (2014). Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change: Geneva, Switzerland.
  25. Sadeghi, A. , Din Pajouh, Y. )2016(. Forecasting the trend of minimum and maximum temperature of Tabriz city under the conditions of climate change in the coming period, conference of new researches in agricultural engineering, environment and natural resources.
  26. Sarafroozeh, F. Jalali, M. Jalali, T. and Jamali, A. )2014(. Assessing the effects of future climate change on wheat water consumption in Tabriz. Geographic Space, 2 (37 and 37): 81-96
  27. Catena, 141, 92-99.
  28. Seifzadeh Momensaraei, A. (2022). Optimization of rice (Oryza sativa L.) and subsequent soybean (Glycine max L. Merr) cropping calendars under the climate change conditions using dynamical general circulation models (GCMs) and DSSAT crop model. Iranian Journal of Crop Sciences, 23(4), 357-372.
  29. Shiri, J., Nazemi, A.H., Sadraddini, A.A., Landeras, G., Kisi, O., Fakheri Fard, A. and Marti, P. (2014a).Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Computers and Electronics in Agriculture, 108: 230- 241.
  30. Shiri, J., Sadraddini, A.A., Nazemi, A.H., Kisi, O., Landeras, G., Fakheri Fard, A. and Marti, P. (2014b).Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology, 508: 1-11.
  31. Shokri, S., Hooshman, A., Ghorbani, M. (2017). The Estimation Evaporation Pan Coefficient For Calculating Reference Evapotranspiration in Ahvaz. Irrigation Sciences and Engineering, 40(1), 1-12.
  32. Simaiee, A. Homaiee, M. Noroozi, A. )2013(.Assessment SEBAL Model to Evapotranspiration Estimation by MODIS and TM Data. Water and Soil Resources Conservation, 2 (4), 29-40.
  33. Smith, I., Chandler, E. (2010). Refining rainfall projections for the Murray Darling Basin of south-east Australia—the effect of sampling model results based on performance. Climatic Change, 102(3), 377-393.
  34. Solomon, S., Qin, D., Manning, M., Averyt, K., Marquis, M. (Eds.). (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press.
  35. Taylor, K. E., Stouffer, R. J., Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American meteorological Society, 93(4), 485-498.
  36. Wang, X., Yang, T., Li, X., Shi, P., Zhou, X. (2017). Spatio-temporal changes of precipitation and temperature over the Pearl River basin based on CMIP5 multi-model ensemble. Stochastic Environmental Research and Risk Assessment, 31(5), 1077-1089.
  37. Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (Vol. 100). Academic press.
  38. Wright, D. B., Knutson, T. R., Smith, J. A. (2015). Regional climate model projections of rainfall from US landfalling tropical cyclones. Climate dynamics, 45(11), 3365-3379.