بررسی روند و پیش نگری تغییرات فرین های دمایی با استفاده از مدل های CMIP6 در شمال غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد آب و هواشناسی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز

2 استادیار آب و هواشناسی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز

3 دانشجوی دکتری آب و هواشناسی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز

چکیده

بررسی تغییرات فرین‌های دمایی به دلیل گرمایش جهانی، خشکسالی و رخداد سرما و یخبندان دارای اهمیت زیادی است. لذا در این پژوهش به بررسی روند و پیش‌نگری تغییرات فرین های دمایی در شمال غرب ایران در دوره پایه (2014-1985) و سه دوره آینده نزدیک(2050-2021)، آینده متوسط(2081-2050) و آینده دور(2100-2081) پرداخته شد. بدین منظور از 2 شاخص‌ حدی دمایی شامل روزهای یخبندان (FD) و روزهای یخی (ID) و آزمون روند من کندال (Maan-Kendall) جهت بررسی تغییرات استفاده شد. جهت پیش‌نگری تغییرات در دوره آینده نیز از بهترین مدل پس از ارزیابی 7 مدل‌ گردش عمومی جو (GCMs) از سری مدل‌های گزارش ششم (CMIP6) تحت سه سناریوی واداشت اجتماعی- اقتصادی شامل SSP1-2.6, SSP3-7.0 و SSP5-8.5 بهره گرفته شد. توزیع فضایی روند تغییرات حدی‌های دمایی در دوره پایه نشان داد که با حرکت از شمال به جنوب و از غرب به شرق منطقه روزهای یخبندان افزایش می‌یابد. هسته بیشینه روزهای یخی نیز تقریبا در جنوب منطقه مورد مطالعه قرار گرفته است. ارزیابی مدل‌های مختلف با شاخص‌های خطاسنجی مختلف نشان داد که مدل‌های MRI-ESM2-0 و MPI-ESM1-2-L بهترین عملکرد را در شبیه-سازی فرین های دمایی در منطقه مورد مطالعه دارند. توزیع روند تغییرات در دوره آینده نیز نشان داد که روندها مشابه با دوره پایه است به طوری که روندهای کاهشی در شاخص‌های مورد بررسی به ویژه بر اساس سناریوی SSP5-8.5 در هر دوره تشدید خواهد شد. بدین صورت که روزهای یخبندان و روزهای یخی در انتهای قرن 21 نسبت به دوره پایه به ترتیب 45 و 13 روز، کاهش داشته است که بیشترین کاهش آنها نیز مربوط به ایستگاه‌های سردسیر منطقه است که نشان می‌دهد با افزایش دما، شاخص‌های یخبندان و روزهای یخی کاهش پیدا خواهد کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the trend and predecting changes in temperature extremes using CMIP6 models in northwest of Iran

نویسندگان [English]

  • Behrouz Sarisaraf 1
  • Hashem Rostamzadeh 2
  • Nabi Mohamadi 3
1 Professor. Department of Climatology. Tabriz University
2 Assistant Professor, Department of Climatology, Tabriz University
3 Ph,D. Student in Climatology .Department of Climatology.Tabriz University
چکیده [English]

Investigating of extreme temperature changes due to Global Warming, drought and the occurrence of cold and frost is very important. Therefore, in this research, the trend and projection of changes in temperature extremes in northwest Iran in the base period (1985-2014) and three periods of the near future (2021-2050), the medium future (2051-2080) and the far future (2081- 2100) was paid. For this purpose, two extreme temperature indices including frost days (FD) and ice days (ID) and the Maan-Kendall trend test were used to check the changes. In order to anticipate the changes in the future period, the best model after evaluating 7 General circulation models (GCMs) from the Coupled Model Intercomparison Project phase 6 (CMIP6) under three The Shared Socioeconomic Pathway including SSP1-2.6, SSP3-7.0 and SSP5- 8.5 was used. Spatial distribution of the trend of changes in extreme temperature in the base period showed that by moving from north to south and from west to east, the ice days increase. The core of the maximum ice days has also been studied almost in the south of the region. According to the results, the average frost days and ice days in the base period are 101 and 19 days per year, respectively, and the maximum and minimum frost days are 146 and 52 days, respectively, for Sarab and Parsabad stations, and the maximum and minimum frost days are also, with 42.32 and 1.23 days, it is related to Zarineh and Parsabad stations. Also, the trend of changes in frost days and ice days in the base period in most stations is a decrease, which is significant at the 0.05 level. The evaluation of different models with different error measurement indices showed that MRI-ESM2-0 and MPI-ESM1-2-L models have the best performance in simulating extreme temperature in the study area. The evaluation of the trend of changes in frozen days and ice days using the Mann-Kendall test in the basic period showed that the trend of changes in most stations is significant at the 1% level. The distribution of changes in the future period also showed that the trends are similar to the base period, so that the decreasing trends in the studied indicators will intensify in each period, especially based on the SSP5-8.5 scenario. Thus, at the end of the 21st century, frost days and ice days have decreased by 45 and 13 days, respectively, and the largest decrease is related to the cold stations of the region, which shows that with the increase in temperature, the index Frosts and icy days will decrease.

Investigating of extreme temperature changes due to Global Warming, drought and the occurrence of cold and frost is very important. Therefore, in this research, the trend and projection of changes in temperature extremes in northwest Iran in the base period (1985-2014) and three periods of the near future (2021-2050), the medium future (2051-2080) and the far future (2081- 2100) was paid. For this purpose, two extreme temperature indices including frost days (FD) and ice days (ID) and the Maan-Kendall trend test were used to check the changes. In order to anticipate the changes in the future period, the best model after evaluating 7 General circulation models (GCMs) from the Coupled Model Intercomparison Project phase 6 (CMIP6) under three The Shared Socioeconomic Pathway including SSP1-2.6, SSP3-7.0 and SSP5- 8.5 was used. Spatial distribution of the trend of changes in extreme temperature in the base period showed that by moving from north to south and from west to east, the ice days increase. The core of the maximum ice days has also been studied almost in the south of the region. According to the results, the average frost days and ice days in the base period are 101 and 19 days per year, respectively, and the maximum and minimum frost days are 146 and 52 days, respectively, for Sarab and Parsabad stations, and the maximum and minimum frost days are also, with 42.32 and 1.23 days, it is related to Zarineh and Parsabad stations. Also, the trend of changes in frost days and ice days in the base period in most stations is a decrease, which is significant at the 0.05 level. The evaluation of different models with different error measurement indices showed that MRI-ESM2-0 and MPI-ESM1-2-L models have the best performance in simulating extreme temperature in the study area. The evaluation of the trend of changes in frozen days and ice days using the Mann-Kendall test in the basic period showed that the trend of changes in most stations is significant at the 1% level. The distribution of changes in the future period also showed that the trends are similar to the base period, so that the decreasing trends in the studied indicators will intensify in each period, especially based on the SSP5-8.5 scenario. Thus, at the end of the 21st century, frost days and ice days have decreased by 45 and 13 days, respectively, and the largest decrease is related to the cold stations of the region, which shows that with the increase in temperature, the index Frosts and icy days will decrease.

کلیدواژه‌ها [English]

  • extreme climate
  • northwest of iran
  • ؛ CMIP6
  • SSP
  1. Adeyeri, O.E., Lawin, A.E., Laux, P., Ishola, K.A., Ige, S.O. 2019, Analysis of climate extreme indices over the Komadugu-Yobe basin, Lake Chad region: Past and future occurrences; Weather and Climate Extremes 23, 100194.
  2. Alijani, B., Raoshani, A., Parak, F., Haidari, R. 2012. The trend of variability of temperature extreme using climate change indicators in Iran. Geography and Environmental hazards, No.2, PP.17-28.
  3. Askarizadeh, S. M. 2016. Spatial and Temporal Detection and Prediction of Climate Extreme Indexes Khorasan Razavi Using LARS-WG Model, Thesis submitted for The Degree of PHD ‌ Meteorology- Climatic Hazards, Yazd University.221P.
  4. Ayugi, B.Y; Dike, V; Ngoma, H; Babaousmail, H; Mumo, R; Ongoma,V. 2021. Future Changes in Precipitation Extremes over East Africa Based on CMIP6 Models. Water, 13, 2358.
  5. Aziz, G. 2004. Climate Change. Ghomes publication .284P.
  6. Cheng, Q., Zhong, F., Wang, P. 2021. Potential linkages of extreme climate events with vegetation and large-scale circulation indices in an endorheic river basin in northwest China. Atmospheric Research, 247 (2021) 105256. PP.1-22.
  7. Esmaeili, H., Raoshani, A., Shakiba, A., Parak, F. 2018. The changing trend of extreme climatic based on the combined indicators of climate change in the area of Iran. Geography and environmental hazards.N.28, PP.89-109.
  8. Filho, W. L, Musa H., Cavan, G., O'Hare, P., Seixas, J. 2016. Climate Change Adaptation, Resilience and Hazards. Springer. DOI 10.1007/978-3-319-39880-8.
  9. Frame, B., Lawrence, J., Ausseil, A. G., Reisinger, A. and Daigneault, A., 2018, adapting global shared socio-economic pathways for national and local scenarios. Climate Risk Management, 21, 39-51.
  10. Hejazizadeh, Z., Hosseini, S A., Karbalaee, A., Poorkarim Barabadi, R., Mousavi, S M. 2022. Spatiotemporal variations in precipitation extremes based on CMIP6 models and Shared Socioeconomic Pathway (SSP) scenarios over MENA. Arabian Journal of Geosciences, 15 (20): 1-14.
  11. Jahanbakhsh, A. S., Sari Saraf, B., Asakereh, H., Shirmoahamadi, S. 2020. Analyzing the temporal-spatial changes of precipitation uper extrene during the years 1965 to 2016. Journal of Spatial Analysis of Environmental Hazards.Year.7, N.1. PP. 89-106.
  12. Lotfi siraei, A. 2019. Simulation and Projection of Climate Extreme in Tehran and Alborz Province. Ph.D Thesis in Climatology, Kharazmi University. Department of Geography.
  13. Luo, M., Liu, T., Meng, F., Duan, Y., Frankl, A. B., Maeyer, P. D. 2018. Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China. Water 2018, 10, 1046. Doi: 10.3390/w1008104.
  14. O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, T. R., Mathur, R., Vuuren, D. P. 2014. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Chang 122(3):387–400.
  15. Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W. 2017. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environmental Change, 42, 153-168.
  16. Shrestha, S., Shrestha, M., Babel, M.S. 2015. Modelling the potential impacts of climate change on hydrology of Indrawati River Basin in Nepal. Environmental Earth Science.
  17. Tan, M. L., Samat, N., Chan, N.W., Lee, A. J., Li, C. Analysis of Precipitation and temperature extremes over the Muda River basin, Malaysia, Water, 11(2), 283.
  18. Teutschbein, C., Seibert, J. 2012. Bias correction of regional climate model simulation for hydrological climateHttps://Doi.Org/10.3390/W11020283.
  19. Vaghefi, S. A., Keykhai, M., Jahanbakhsh, F., Sheikholeslami, J., Ahmadi, A., Yang, H., Abbaspour, K.C. 2019. The future of extreme climate in Iran. 9:1464.
  20. Vogel, E., Donat, M., VAlexander, L., Meinshausen, M., KRay, D., Karoly, D., Meinshausen, N., Frieler, K. 2019. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010.

 

  1. Wang, S., Liu, Q., Huang, C. 2021. Vegetation Change and Its Response to Climate Extremes in the Arid Region of Northwest China; Remote Sens., 13, 1230.
  2. World Meteorological Organization. 2009. Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation. Climate Data and Monitoring WCDMP-No. 72.
  3. You, Q., Cai, Z., Wu, F., Jiang, Zh., Pepin, N., Shen, S.S.P. 2021. Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Climate Dynamics.
  4. Zarin, A., Dadashi Roodbari, A. 2021. Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144: 643–660.
  5. Zarin, A., Dadashi Roodbari, A. 2020. Projection of the long-term vision of Iran's future Temperature on the output of Coupled Model Intercomparison Project phase 6. Journal of Earth and Space Physics. 46, 583-602.
  6. Zhu, X., Lee, S.Y; Wen, X., Ji, x., Lin, L., Wei, Zh., Zheng, Z. 2021. Extreme climate changes over three major river basins in China as seen in CMIP5 and CMIP6. Climate Dynamics. https://doi.org/10.1007/s00382-021-05767-z.