تحلیل روند تغییرات پدیدۀ گرد و غبار ناحیۀ غرب ایران طی دورۀ آماری 2018-1979

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار اقلیم شناسی، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 دانشجوی دکتری اقلیم شناسی، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

چکیده

یکی از مخاطرات مناطق غرب ایران پدیدۀ گرد و غبار است که در تحقیق حاضر، فراوانی وقوع کدهای 06 و 07 هواشناسی 18 ایستگاه همدید (2018-1979) با روش‌های آماری من-کندال و شیب سنس بررسی و تغییرات سالانۀ آنها توسط نمودارهای تعیین نقاط جهش مشخص شد. روند معنی‌دار افزایشی نشان داد که بیشترین فراوانی گرد و غبار در ایستگاه‌های آبادان، بندر ماهشهر، دهلران، سرا رود، سقز و سنندج در کد 06 و در کد 07 بیجار، روانسر، سرپل ذهاب، سقز، سنندج، قروه وکنگاور است. و ایستگاه-های‌ دزفول و رامهرمز روند معنی‌دارکاهشی داشتند. نمودارهای تعیین نقاط جهش کد 06 طی 40 سال اخیر به روش رتبه‌ای من-کندال ایستگاه‌های آبادان و سنندج نشان داد که روند فراوانی گرد و غبار در سال‌های اخیر افزایشی بوده و در کد 07 نیز بیشتر سال‌های مورد مطالعۀ ایستگاه‌های مذکور کماکان روند افزایشی داشتند. با توجه به پراکنش ایستگاه‌های دارای روند معنی‌داری در سطح اعتماد 95 درصد، می‌توان نتیجه گرفت که روند فراوانی‌ها در غرب کشور تابع نظم خاصی است. فراوانی وقوع کدهای 06 و 07 در مقیاس سالانه و فصلی در نرم‌افزار اکسل آماده‌سازی و در محیط نرم افزار ArcGIS 10.7 با روش IDW درونیابی شد. درکد 07 مقیاس سالانه بیشترین میزان پدیدۀ مورد نظر مربوط به ایستگاه‌های سنندج و کرمانشاه بود و در کد 06 ایستگاه‌های سنندج و کرمانشاه و آبادان بیشترین فراوانی را نشان دادند. در مقیاس فصلی، بهار و تابستان وسعت بیشتر و پاییز و زمستان کمتر بوده که علت آن را باید در بین عوامل همدید جستجو کرد.

واژه‌های کلیدی: تحلیل روند، فراوانی وقوع گرد و غبار، من-کندال، شیب سن، غرب کشور

کلیدواژه‌ها


عنوان مقاله [English]

The trend analysis of dust phenomenon changes in the western region of Iran during 1979-2018

نویسندگان [English]

  • Tayebeh Akbari Azirani 1
  • Ameneh Yahyavi Dizaj 2
  • Ghasem Keykhosravi 1
1 Assistant Professor Shahid Beheshti University
2 Department of Physical Geography
چکیده [English]

The trend analysis of dust phenomenon changes in the western region of Iran during 1979-2018





Introduction

Dust, one of the most important known atmospheric phenomena and natural disasters, has attracted the attention of many thinkers and researchers in various branches of science, including atmospheric science. The origin and mechanism of formation, transmission, and diffusion, as well as the consequences of this phenomenon, are studied with various techniques and methods. Countries located in the arid and semi-arid belt of the world, including Iran, have always been involved with the phenomenon of dust. The occurrence of successive droughts in recent years and the possible consequences of climate change in the field of desertification have made dust storms the focus of many researchers' attention (Shahkoi and Rahmani, 2018).

Data and methods

For 18 selected stations in the annual time series (1979-2018), first, the statistics of both Mann-Kendall and Sen,s slope non-parametric tests were calculated. After that, the significance of their results was tested at the 95% confidence level. In this research, to evaluate the frequency of days with dust, weather codes 06 and 07 were prepared in the west of the country, and maps of days with dust were drawn. In this way, the mentioned maps were analyzed on the annual and seasonal scale of codes 06 and 07 using the IDW interpolation method in the ArcGIS 10.7 software environment. In addition to that, the trend of changes in the days with the dust of weather codes 06 and 07 during 40 years was analyzed based on the non-parametric Mann-Kendall and Sen,s slope statistical methods, as well as the charts for determining the 40-year jump points of codes 06 and 07 using the method Mann-Kendall was evaluated. Finally, codes 06 and 07 were interpolated annually and seasonally by the IDW method in the ArcGIS 10.7 software environment.

Results and discussion

Based on the findings of the present research, the frequency of annual occurrence of codes 06 and 07 (1979-2018) in the west of Iran showed that in code 07, the highest amount of dust phenomenon is related to Sanandaj and Kermanshah stations, and in code 06 stations Sanandaj, Kermanshah, and Abadan are the most abundant. The results of the frequency of seasonal occurrence of code 06 showed that dust covers a larger area in the spring season. In the summer season, there is more dust phenomenon in the northeastern parts of the region. And in the autumn season, a noticeable decrease in the frequency of dust occurrence was observed. Finally, the frequency of dust occurrence has decreased in the winter season as well as in the autumn season. The results of the frequency of seasonal occurrence of code 07 also indicate that the dust phenomenon was the most frequent in the spring of Sanandaj and Saqqez stations. And the lowest frequency of occurrence in spring is assigned to Ramhormoz station. In the summer season, more dust phenomenon occurred in the northeastern parts of the region, i.e. Bijar and Qorveh stations. Significant decreasing trend; In both codes 06 and 07, Dezful and Ramhormoz stations show a decreasing trend. a significant trend of increase; It includes the stations of Abadan, Bandar Mahshahr, Dehlran, Sara Roud, Saqqez, and Sanandaj in code 06. And in code 07, Bijar, Ravansar, Sarpol Zahab, Saqez, Sanandaj, Qorve, and Kangavar stations have a significant increasing trend. The jump graphs of dusty days in code 06 of Abadan and Sanandaj stations showed an increasing trend, and in code 07, the mentioned stations continued to show an increasing trend for most of the years.

Conclusion

The significant increasing trend of the phenomenon of dust showed that the highest frequency of occurrence in the stations of Abadan, Bandar Mahshahr, Dehlran, Sara Roud, Saqez, and Sanandaj in code 06 and code 07 Bijar, Ravansar, Sarpol Zahab, Saqez, Sanandaj, It has been Qorve and Kangavar. A significant decrease trend of codes 06 and 07 have occurred in Dezful and Ramhormoz stations. The results of the annual charts for determining the mutation points of code 06 during the last 40 years in Abadan and Sanandaj showed that the increasing trend has increased in recent years. And in code 07, the mentioned stations have continued to increase in most of the years. According to the distribution of stations with significant trends in western Iran, it can be concluded that the trends are subject to a certain order. In code 07, on an annual scale, the highest amount of dust is related to Sanandaj and Kermanshah stations, and in code 06, Sanandaj, Kermanshah, and Abadan stations have the highest frequency. The reason for the occurrence of more dust in the spring season should be considered to be the combined factors and the exit of the western winds from the country. In the summer, the very dry air dominating the deserts of the neighboring countries causes the instabilities of these regions to turn into dust. In autumn and winter, which coincides with the arrival of external systems with instability and humidity in the country, a decrease in the frequency of dust occurrence is evident in some study stations.



Keywords: trend analysis, frequency of dust occurrence, Man-Kendal, Sen’s Slope, west of the country

کلیدواژه‌ها [English]

  • trend analysis
  • frequency of dust occurrence
  • Man-Kendal
  • Sen&rsquo؛ s Slope
  • west of the country
  1. Ahmadi, M., AA. Dadashi Rudbari, M. Jaafari, 2018, The effect of boundary layer height on dust storm in Southwest of Iran (case study: February 21- 24, 2016). Natural Environment Hazards, No. 19, pp. 151-174.
  2. Aliabadi, K., MA. Asadi Zangeneh, AA. Dadashi Roudbari, 2014, Evaluation and monitoring dust storm by using remote sensing (Case study: west and southwest of Iran). Scientific Journal of Rescue Relief, No. 1, pp. 1-21.
  3. Arfan Ali, M., J.E. Nichol, M. Bilal, Z. Qiu, U. Mazhar, M. Wahiduzzaman, Almazroui, M.N. Islam, 2020, Classification of aerosols over Saudi Arabia from 2004–2016. Atmos. Environ. No. 15, pp. 117-785.
  4. Atai, H., Ahmadi, F., 2009. Dust as one of the environmental problems of the Islamic world, a case study of Khuzestan province, the place of publication of the fourth international congress of geographers of the Islamic world.
  5. Baaghideh, M.,H. Ahmadi, 2013, The Analysis of dust Hazard Occurrence And Its Variations In West and southwest of Iran. Relief and Rescue, No. 2.
  6. Babaei Fini, U., T. Safarrad, M. Karimi, 2013, Spatial-temporal analysis of dust occurrence in west of Iran. Environmental Science, No. 2, pp. 375-388.
  7. Bagherpour, M., Seydian, M., Fathabadi, A.H, Mohammadi, M. 2017, Study of Mann-Kendall Test Performance in Detecting the Series of Autocorrelation, Iran Watershed Management Sciences And Engineering. No. 11(36) , pp, 21-11.
  8. Barati, Gh.R., T. Akbariazirani, M. Moradi, A. Shamekhi, 2020, Identification of the Synoptic patterns of dust storms over southern provinces of Iran. Desert, No. 2, pp. 249-258.
  9. Boloorani, A.D., Y. Kazemi, A. Sadeghi, S.N. Shorabeh, M. Argany, 2020, Identification of dust sources using long term satellite and climatic data: A case study of Tigris and Euphrates basin. Atmospheric Environment, No.24, pp. 117-299.
  10. Burrell, A.L., J.P. Evans, M.G. De Kauwe, 2020, Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. nature communications, No. 11, pp. 1-11.
  11. Choubin, B., F. Sajedi Hosseini, O. Rahmati, M. Mehdizadeh Youshanloei, M. Jalali , 2022, Temporal and Spatial Variations of Dust Days in Western Azarbaijan Province, Determination of The Influencing Factors and Source of Events. Desert Management, No. 2, pp. 71-86.
  12. Daniali, M., N. Karimi2019. Spatiotemporal analysis of dust patterns over Mesopotamia and their impact on Khuzestan province. Iran. Natural Hazards. No. 1, pp. 259–281.
  13. Ebrahimi-Khusfi, Z., A.R. Nafarzadegan, F. Dargahian, 2021, Predicting the number of dusty days around the desert wetlands in southeastern Iran using feature selectionand machine learning techniques. Ecological Indicators, No. 125, pp. 107-499.
  14. Ebrahimi-Khusfi, Z., S.M. Soleimani, 2021, Recent changes in physical properties of the land surface and their effects on dust events in different climatic regions of Iran. Arabian Journal of Geoscience, No. 287, pp. 107-499.
  15. Gandham, H., H.P. Dasari, S. Langodan, P.K. Karumuri, I. Hoteit, , 2020, Major changes in extreme dust events dynamics over the Arabian Peninsula during 2003–2017 driven by atmospheric conditions. J. Geophys Res Atmos, No. 125, pp. 2020-32931.
  16. Garshick, Li, J., Al-Hemoud, A. Huang S, P. Koutrakis ,2020, Impacts of meteorology and vegetation on surface dust concentrations in Middle Eastern countries. Science of the Total Environment, No. 712, pp. 136-597.
  17. Ghavidel rahimi Y, Farajzadeh M, Lashani Zand E. 2018, The Temporal Analysis of Dust Storms in Khoramabad Synoptic Station. No. 18 (51) ,pp. 87-102.
  18. Gholami, H., A. Mohamadifar, A. Sorooshian, J.D.Jansen, 2020, Machine-learning algorithms for predicting land susceptibility to dust emissions: the case of the Jazmurian Basin. Iran. Atmos Poll Res, No. 8, pp. 1303–1315.
  19. Hamidi M., 2020, The key role of water resources management in the Middle East dust events. CATENA, No.187, pp. 104-337.
  20. Hamzehee, M., M. Babaei, A. Papzan, 2021, Zoning of Dust-Affected Areas in Kermanshah Province. Geography and Environmental Planning, No. 4, pp. 107-134.
  21. Hossien hamzeh, N., E. Fattahi., M. Zoljodi, P. Ghaforian, A. Ranjbar, 2015, Synoptic-dynamic analysis of dust storm and its simulation in southwest of Iran in summer 2005. Spatial Analysis of Environmental Hazards, No. 1, pp. 91-102.
  22. Jin, Q., J. Wei, W.K.M. Lau, B. Pu, C. Wang, ,2021, Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges. Earth-Sci. Rev, No. 215, pp. 103-562.
  23. Kendall, M.G., 1970, Rank Correlation Methods, 2nd Ed., New York: Hafner.
  24. Lababpour A., 2020, The response of dust emission sources to climate change: Current and future simulation for southwest of Iran. Science of the Total Environment, No.714, pp. 136-821.
  25. Mahmoodimahpash, N., B. Souri, 2021, Comparison of Concentration and Trend of Dust Particles in Relation to Climatic Variables in the Western Half of Iran. Human and Environment, No. 58, pp. 17-29
  26. Mann, H.B, 1945, Nonparametric tests against trend, Econometrica, No.13, pp. 245-259.
  27. Mansourmoghaddam, M., N. Naghipur, I. Rousta, HR. Ghaffarian, 2021, Temporal and Spatial Monitoring and Forecasting of Suspended Dust Using Google Earth Engine and Remote Sensing Data (Case Study: Qazvin Province). Desert Management, No. 1, pp. 77-98.
  28. Mashat, A.-W., A.M. Awad, M.E. Assiri, A.H. Labban, 2021, Synoptic pattern of the Red Sea trough associated with spring dust over the northern and western Arabian Peninsula. Meteorol. Atmos Phys, No.3, pp. 655–673.
  29. Mirmusavi, , Z. Taran, 2021, Investigation and analysis of the relationship between dust fluctuations and temperature and precipitation fluctuations in the west and southwest of Iran. Geography and Planning, No. 77, pp. 245-259.
  30. Namdari, S., A. Ali Hajibaglou, Gh. Abazari, 2022, Analysis of changes in Iran's Dust hotspots in the last twenty years. Geography and Planning, No. 78, pp. 345-345
  31. Niknejad, M, Mahdavi., A, Karami, O, 2013, Comparison of the accuracy of common interpolation methods to prepare temperature maps, The first national conference on agriculture and sustainable natural resources, pp, 1-1027.
  32. Rasouli A.A, Sari Sarraf, B, Mohammadi Gh.H. 2013, analysis of observe Dusty Days in the west of Iran, Applying Non- parametric statistical methods, Natural Geography, No. 4 (11), pp, 1- 16.
  33. Ravi Kumar, K., R. Attada, H.P. Dasari, R.K. Vellore, 2019, On the recent amplification of dust over the Arabian Peninsula during 2002–2012. J. Geophys Res Atmos, No. 23, pp. 13220–13229.
  34. Sabetghadam, S., O. Alizadeh, M. Khoshsima, A. Pierleoni ,2021, Aerosol properties,trends and classification of key types over the Middle East from satellite-derived atmospheric optical data. Atmos. Environ, No. 246, pp. 118-100.
  35. Sehat Kashani, S., Gh. Kamali, M. Vazifedoust, AA. Akbari Bidakhti, M. Fakhraeipou , 2013, Routing of dust occurrence in western and southwestern regions of Iran (September 2005), Dust Routing in West and South West of Iran (September 2008).Environmental Sciences, No. 1, pp. 95-107.
  36. Sen, P.K., 1968, Asymptotically efficient tests by the method of n rankings. J. Roy. Statist. Soc. Ser. B. 30
  37. Shahkoi, I., T. Rahmani, 2018, Dust Risk Assessment in Northwest of Iran. Scientific Quarterly of Spatial Planning (Geography), No. 2, pp. 57-80.
  38. Shi, L., J. Zhang, F. Yao, D.a. Zhang, H. Guo, 2021, Drivers to dust emissions over dust belt from 1980 to 2018 and their variation in two global warming phases. Sci. Total Environ, No. 767, pp. 144-860.
  39. Tavuosi T, Zahraei A. 2013, Modeling Time Series of Dust Phenomena in Ahvaz . GeoRes. No. 28 (2) pp. 159-170.
  40. Theil, H., 1950, A rank-invariant method of linear and polynomial regression analysis, Part 3. Proc Koninalijke Nederlandse Akad Weinenschatpen A, No. 53, pp. 1397–1412.
  41. Tiangang, Y., C. Siyu, H. Jianping, Z. Xiaorui, L. Yuan, M. Xiaojun, Z. Guolon, 2019, Sensitivity of simulating a dust storm over Central Asia to different dust schemes using the WRFChem model. Atmospheric Environment, No. 207, pp. 16-29.
  42. Weston, M.J., M. Temimi, 2021, On the analysis of the low-level double temperature inversion over the United Arab Emirates: a case study during april 2019. Geosci. Rem. Sens, No. 2, pp. 346–350.


Zoulfaghari, H., H. Abedzadeh, 2004, A synoptic Analysis of dust Systems at The west Part of Iran. Journal of Geography and Development, No. 84, pp. 187-173.