ارزیابی الگوریتم سبال برای برآورد تبخیر-تعرق واقعی با استفاده از تصاویر سنجنده لندست 8 در زمین‌های با کاربری اراضی متفاوت (مطالعه موردی: منطقه فریمان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی، دانشگاه فردوسی مشهد

2 استاد دانشکده علوم و مهندسی آب، دانشگاه فردوسی مشهد

چکیده

تبخیر-تعرق از اجزاء اصلی معادله بیلان آب می‌باشد که اندازه گیری مقادیر واقعی آن کار بسیار دشواری است. به دلیل اینکه میزان تبخیر-تعرق تابعی از توپوگرافی، اقلیم، نوع پوشش گیاهی، نوع کاربری زمین و خصوصیات خاک می‌باشد، بنابراین استفاده از مدل‌های قابل اعتمادی که بتوانند مقادیر واقعی تبخیر-تعرق را در مقیاس مکانی تخمین بزنند کمک شایانی به حل معادله بیلان آب می‌کند. هدفاصلی این پژوهش ارزیابی مدل سبال برای برآورد تبخیر-تعرق واقعی با استفاده از روش‌های سنجش از دوری در زمین‌های دارای کاربری‌ اراضی متفاوت از جمله کشت آبی، کشت دیم و مراتع می‌باشد، است. در دهه‌های اخیر روش‌های متعددی برای اندازه‌گیری و تخمین تبخیر-تعرق واقعی به وسیله پژوهشگران پیشنهاد شده است. از آنجاکه روش‌های مذکور عمدتا نیازمند داده‌های اندازه‌گیری شده زمینی زیادی بوده و این اندازه‌گیری‌ها به صورت نقطه‌ای می‌باشند، دارای محدودیت هستند. تکنیک سنجش از دور برای تخمین این مولفه در سطح وسیع و در بازه زمانی کوتاه، می‌تواند کمک کننده باشد. بنابراین در این پژوهش، مقادیر تبخیر-تعرق واقعی با استفاده از الگوریتم سبال و تکنیک سنجش از دور در منطقه فریمان از توابع استان خراسان رضوی که دارای اقلیم نیمه‌خشک می‌باشد، در سال‌های 1393، 1394 و 1395 برای 8 روز و با استفاده از تصاویر سنجنده لندست 8، برآورد شد. با توجه به وسیع بودن منطقه مورد مطالعه و عدم امکان استفاده از وسایل اندازه‌گیری دقیق تبخیر-تعرق واقعی مانند لایسیمتر، برای صحت سنجی نتایج بدست آمده از الگوریتم سبال، از روش استاندارد فائو پنمن-مانتیث به عنوان مقادیر مرجع استفاده شد. مقایسه آماری مقادیر تبخیر-تعرق بدست آمده از الگوریتم سبال با خروجی‌های روش فائو پنمن-مانتیث به طور کلی نشان می‌دهد که ضریب تبیین، 96/0 و میانگین مربعات خطا 5/0 میلیمتر در روز می‌باشد. این نتایج بیانگر دقت بالای الگوریتم سبال در تخمین مقدار تبخیر-تعرق واقعی در اقلیم نیمه خشک می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of SEBAL algorithm for actual evapotranspiration estimating by using Landsat 8 images in multiple land use landscape (Case study: Freeman area)

نویسندگان [English]

  • Mosayeb Moqbeli damane 1
  • Hossein Sanaei nejad 2
  • Morteza Kafash 1
1 Department of water engineering-Faculty of agriculture-Ferdowsi university of mashhad
2 Department of water engineering-Faculty of agriculture-Ferdowsi university of mashhad
چکیده [English]

Introduction

Present study estimated the large-scale actual evapotranspiration in multiple land use landscape (e.g., Irrigated cultivation, rainfed and pastures) by employing the remote sensing approaches. Measurement of actual evapotranspiration is a difficult process which was calculated as a function of the various climatic and topographical factors for the studied area. Thus, using of models which can estimate the amount of actual evapotranspiration owing to a large and high reliability factor is one of applicable solutions. In recent decades, some methods have been proposed by researchers to determine and measure the actual evapotranspiration. These methods had some limitations and they mainly require a large number of ground-based measurements. Employing the methods based on meteorological stations data from the past has been used as a reference for the estimation of actual evapotranspiration. There are a number of disadvantages of traditional measurement operation such as the lack of sufficient number of measurement points, incomplete meteorological data in many areas, high cost and time consuming of collecting terrestrial information. On the other hand, these measurements are usually based on the weather stations (point based). So, the techniques based on remote sensing data have been developed to tackle these problems. Remote sensing technology has the ability to collect data in large spatial ranges and in short time ranges and the best method to estimate the actual evapotranspiration for areas with difficulty data access or lack of data.

Material and methods

In this study, actual evapotranspiration values were measured by using Surface Energy Balance Algorithm for Land (SEBAL) and Remote Sensing Technique in Fariman area of Khorasan Razavi province. The ground data were used in this study which are included as wind speed, dry temperature, relative humidity, minimum temperature, maximum temperature, sun hours, radiation and evaporation. These parameters were extracted from the automatic and synoptic stations of Fariman. Furthermore, Landsat 8 satellite images were employed to estimate the actual evapotranspiration, that were downloaded from the USGS website in geotiff format. In order to calculate the required parameters, eight days of landsat-8 satellite images (in 2015 and 2016) were used to enhance the proper estimation. In the SEBAL algorithm, the actual evapotranspiration is calculated as the latent heat flux which were determined by using the energy balance equation at the time of the satellite overpass. Because of the large area of study and the impossibility of using accurate evapotranspiration instruments such as lysimeter, eddy covariance and etc., for validation of the results of SEBAL algorithm, the FAO Penman-Monteith standard method was used as the reference. Comparisons among results were considered based on some indexes like R2 and RMSE.

Results and discussion

The values of different parameters of the SEBAL algorithm were calculated parametrically. These parameters included as the normalized different vegetation index (NDVI), net radiation flux, land surface temperature, difference between air and land surface temperature, soil heat flux, sensible heat flux and finally actual instant and daily evapotranspiration. Statistical comparison of the SEBAL outcomes with FAO Penman-Monteith method shows that the coefficient of determination is 0.96 and the mean squared error is 0.5 mm per day. These results indicate the high accuracy of SEBAL algorithm in estimating actual evapotranspiration in semi-arid climates with multiple land use landscapes.

Conclusions

In this study, the actual evapotranspiration was estimated for part of the Fariman region with irrigated cultivation, rainfed and pasture lands by using the SEBAL algorithm. This model is a remote sensing method based on physical equations. The developed model which was based on the remote sensing technique estimates the amount of evapotranspiration owing to large - scale areas and areas where meteorological data are not available. The most important limitation of this study was the absence of measured actual evapotranspiration owing to which it was finally tried and examined by the best possible method to validating the estimated values . Therefore, the results obtained from the SEBAL algorithm were compared with the results of the FAO-Penman-Monteith method. Results show that the drift of the values obtained from the SEBAL algorithm was slightly higher than the reference method in some days, and some days it was lower. In total, the accuracy of the final results for the entire study area can be deduced from the accuracy of the results obtained in the considered part of the images and the integrity of the parameters used throughout the images. Finally, by considering the obtained results, it can be concluded that the SEBAL algorithm has reliable outputs for different land use areas and can be used.

کلیدواژه‌ها [English]

  • Actual Evapotranspiration
  • Khorasan Razavi
  • Remote Sensing
  • SEBAL algorithm
  1. Abrishamkar, M., & Ahmadi, A. (2017). Evapotranspiration estimation using remote sensing technology based on SEBAL algorithm. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 41(1), 65-76.
  2. Bagheri, M., Morid, S., & Arshad, S. (2017). Application of Remotely-Sensed Data to Estimate a Water Budget for Data-Scarce Endorheic Basins: A Case Study of Lake Urmia basin, Iran. Journal of the Indian Society of Remote Sensing, 45(1), 101-112.
  3. Bala, A., Rawat, K. S., Misra, A. K., & Srivastava, A. (2016). Assessment and validation of evapotranspiration using SEBAL algorithm and Lysimeter data of IARI agricultural farm, India. Geocarto International, 31(7), 739-764.
  4. Baret, F., Jacquemoud, S., & Hanocq, J. F. (1993). The soil line concept in remote sensing. Remote Sensing Reviews, 7(1), 65-82.
  5. Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology, 212, 198-212.
  6. Bastiaanssen, W. G. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of hydrology, 229(1-2), 87-100.
  7. Calcagno, G., Mendicino, G., Monacelli, G., Senatore, A., & Versace, P. (2007). Distributed estimation of actual evapotranspiration through remote sensing techniques. In Methods and tools for drought analysis and management (pp. 125-147). Springer, Dordrecht.
  8. Gebremichael, M., Wang, J., & Sammis, T. W. (2010). Dependence of remote sensing evapotranspiration algorithm on spatial resolution. Atmospheric Research, 96(4), 489-495.
  9. Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2008). ET mapping for agricultural water management: present status and challenges. Irrigation science, 26(3), 223-237.
  10. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309.
  11. Jamshidi, S., Zand-Parsa, S., Naghdyzadegan Jahromi, M., & Niyogi, D. (2019). Application of a simple Landsat-MODIS fusion model to estimate evapotranspiration over a heterogeneous sparse vegetation region. Remote Sensing, 11(7), 741.
  12. Karimi, P., & Bastiaanssen, W. G. (2015). Spatial evapotranspiration, rainfall and land use data in water accounting–Part 1: Review of the accuracy of the remote sensing data. Hydrology and Earth System Sciences, 19(1), 507-532.
  13. Khan, A., Stöckle, C. O., Nelson, R. L., Peters, T., Adam, J. C., Lamb, B., ... & Waldo, S. (2019). Estimating biomass and yield using METRIC evapotranspiration and simple growth algorithms. Agronomy Journal, 111(2), 536-544.
  14. Koloskov, G., Mukhamejanov, K., & Tanton, T. W. (2007). Monin–Obukhov length as a cornerstone of the SEBAL calculations of evapotranspiration. Journal of Hydrology, 335(1), 170-179.
  15. Liou, Y. A., & Kar, S. K. (2014). Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—A review. Energies,7(5), 2821-2849.
  16. Losgedaragh, S. Z., & Rahimzadegan, M. (2018). Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). Journal of Hydrology, 561, 523-531.
  17. Miryaghoubzadeh, M., Solaimani, K., Habib nejad roshan, M., Shahedi, K., Abbas pour, K., & Akhvan, S. (2012). Estimation and assessment of actual evapotranspiration using remote sensing data (Case study: Tamar basin, Golestan province, Iran). Irrigation and Water Engineering, 4(3), 89-102.
  18. Nouri, H., Faramarzi, M., Sobhani, B., & Sadeghi, S. H. (2017). Estimation of evapotranspiration based on surface energy balance algorithm for land (SEBAL) using landsat 8 and modis images. Applied ecology and environmental research, 15(4), 1971-1982.
  19. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote sensing of environment, 48(2), 119-126.
  20. Rango, A. (1994). Application of remote sensing methods to hydrology and water resources. Hydrological Sciences Journal, 39(4), 309-320.
  21. Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote sensing of environment, 55(2), 95-107.
  22. Senkondo, W., Munishi, S. E., Tumbo, M., Nobert, J., & Lyon, S. W. (2019). Comparing remotely-sensed surface energy balance evapotranspiration estimates in heterogeneous and data-limited regions: A case study of Tanzania’s Kilombero Valley. Remote Sensing, 11(11), 1289.
  23. Tasumi, M., Trezza, R., Allen, R. G., & Wright, J. L. (2003, September). US Validation tests on the SEBAL model for evapotranspiration via satellite. In 2003 ICID Workshop on Remote Sensing of ET for Large Regions (Vol. 17).
  24. Tasumi, M. (2019). Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agricultural Water Management, 226, 105805.
  25. Tasumi, M., Moriyama, M., & Shinohara, Y. (2019). Application of GCOM-C SGLI for agricultural water management via field evapotranspiration. Paddy and Water Environment, 17(2), 75-82.
  26. Zamansani, E., Khoorani, E., Sadeghi Lari, A., & Sadidi, J. (2016). Evaluation of evapotranspiration of wheat using SEBAL algorithm (Case study: Agricultural Research Station of Haji Abad). Physical Geography Research, 49(4), 667-681.