تأثیر سامانه های سینوپتیکی بزرگ مقیاس بر وقوع فراگیر توفان تندری غرب و شمال غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار اقلیم‌شناسی، گروه جغرافیا، دانشگاه رازی، کرمانشاه ایران

2 کارشناس ارشد اقلیم‌شناسی، دانشگاه رازی، کرمانشاه، ایران

3 دانش‌آموختۀ دکتری اقلیم شناسی، دانشگاه رازی، کرمانشاه، ایران

4 گروه هواشناسی و اقلیم‌شناسی، موسسۀ جغرافیای طبیعی و برنامه‌ریزی محیطی، دانشگاه آدام میکیویچ، پوزنان، لهستان

چکیده

بدین منظور شناسایی تأثیر گردش جوی بر وقوع توفان‌های تندری در غرب ایران از داده‌های روزانه 12 ایستگاه همدید، و داده‌های شبکه‌ای، طی دوره آماری 2014-1986 استفاده شده است. با استفاده از کدهای هوای حاضر مربوط به توفان تندری ، 27 روز مشخص، و با استفاده از روش خوشه-بندی سلسله مراتبی وارد خوشه‌بندی شدند. برای ترسیم و تحلیل نقشه های مورد نیاز نیز از نرم‌افزارهای گردس، سورفر و های‌اسپلیت استفاده شده است. بررسی چرخۀ ماهانه، فصلی و سالانۀ وقوع توفان تندری نشان داد که بیشینۀ وقوع توفان تندری در ماه می و فصل بهار است . ۲۴ روز از ۲۷ روز فراگیر (۸۹ درصد) توفان تندری در غرب و شمال‌غرب ایران، مربوط به ماه‌های گرم سال(آوریل تا سپتامبر) می‌باشد. از نظر موقعیت مکانی، استان‌های واقع در غرب منطقۀ مورد مطالعه شامل استان‌های آذربایجان غربی و کردستان مجموعاً با 49 مورد بیشترین توفان تندری را تجربه کرده‌اند و استان لرستان که در جنوب این منطقه واقع شده است با 8 مورد کمترین وقوع فراگیر توفان تندری را داشته است. نتایج خوشه‌بندی سلسله مراتبی نشان داد که وقوع توفان‌های تندری، تحت تأثیر سه الگوی جوی سیستم‌های مانع، پدیده سردچال و موج‌های کوتاه بادهای غربی شکل می‌گیرند، که در این بین، پدیدۀ سردچال با ۱۴ مورد، اصلی‌ترین الگو در وقوع توفان‌های تندری غرب و شمال‌غرب ایران است. تحلیل نقشه‌های دما در سطوح ۸۵۰ و ۵۰۰ هکتوپاسکال نشان داد که وقوع توفان‌های تندری در منطقۀ مورد مطالعه با ناهنجارهای منفی دمایی همراه است و انطباق همزمان کم‌فشار سطحی و واگرایی بالایی سطح ۵۰۰ هکتوپاسکال در غرب و شمال‌غرب ایران سبب تشدید شرایط صعود هوا و ناپایداری جوی و در نهایت توفان تندری می‌شود. همچنین مسیریابی توده‌های هوای مؤثر بر توفان‌های تندری نشان داد که منشأ این الگوهای جوی، سامانۀ مدیترانه، سودانی و سامانه‌های ادغامی هستند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Large-scale Synoptic Systems on the Widespread Occurrence of Thunderstorms in the West and Northwest of Iran

نویسندگان [English]

  • Jafar Masoompour Samakosh 1
  • fatemeh Taheri 2
  • Samira Koushki 3
  • Mateusz Taszarek 4
1 Department of Geography, Razi University
2 department of Geography, Razi University
3 department of Geography, Razi University
4 Department of Meteorology and Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University
چکیده [English]

Introduction: Thunderstorms are local, medium-scale weather systems of 20 to 50 km that depend on the height of boiling clouds. They are associated with thunderstorms and indicate the high level of development of convective conditions in the humid air. The occurrence of thunderstorms is a part of the nature of Iran's climate, which causes a lot of human and financial losses in different regions every year, including the damage caused by thunderstorms in Khuzestan province during the study period 2001-2006. West and northwest of Iran are among the areas where the occurrence of severe thunderstorms with heavy rainfall has a high frequency. This study tries to identify the dynamic and atmospheric factors affecting thunderstorms in the west and northwest to provide appropriate information about the situation of this phenomenon for forecasting and prognosis, damage reduction, crisis management, and increasing the level of productivity of provided water resources.

Methodology: To achieve the effect of atmospheric circulation on the pervasive occurrence of thunderstorms in western and northwestern Iran, the current weather codes that indicated the occurrence of thunderstorms in the region were selected, which include codes 29, 95, 96, 97, and 99, Data related to these codes were obtained from the Meteorological Organization. Also, to determine the prevailing atmospheric circulation conditions during thunderstorm days in the study area, sea level pressure (SLP), geopotential height (hPa), and air temperature data were extracted for 850 and 500 hPa levels on a daily scale. These data were Prepared from the network databases of the National Center for Environmental Prediction / Atmospheric Science (NCEP-NCAR) with a spatial resolution of 2.5 * 2.5 degrees and the European Medium-Term Forecast Center (ECMWF). With 1 * 1 degree spatial separation. The hierarchical method was used to determine the prevailing atmospheric circulation patterns on days with thunderstorms, which were clustered based on geopotential elevation data at the level of 500 hPa. After identifying the atmospheric patterns that caused the storm, the average maps of the patterns at the desired levels were drawn using Surfer software. The composite temperature map was drawn at two levels of 850 and 500 hPa at the time of the phenomenon and all maps were compared with the anomaly maps because this shows the difference between the prevailing values at the time of the phenomenon and the average values. Then, the Nova HySplit model was used to identify the air mass affecting the occurrence of this phenomenon. The input of this model is meteorological data of sea level pressure, geopotential altitude, and air temperature, which were obtained from two databases of the National Center for Atmospheric Research and data of the European Center for Medium-Range Forecasting.

Discussion and results: In the 29-year statistical period (1986-2014), a total of 27 days of widespread thunderstorms were identified. Examination of the monthly, seasonal and annual cycle of thunderstorms showed that the maximum occurrence of thunderstorms is in May and spring, and also the years 2005 and 2010 with 4 events had the highest frequency of thunderstorms. In terms of location, the provinces located in the west of the study area, including the provinces of West Azerbaijan and Kurdistan, experienced the most thunderstorms with a total of 49 cases, and Lorestan province, which is located in the south of this region, had the least thunderstorms with 8 cases. Maps of average sea level pressure during the days of thunderstorms showed that the occurrence of thunderstorms in the western and northwestern regions of Iran is associated with a low-pressure system throughout the region with values between 1007 and 1011 hPa. That is, the occurrence of thunderstorms in the region is possible under the negative anomalies of sea level pressure. In addition, average temperature maps at the 850 hp level during thunderstorm events show that the temperature has decreased to the northwest, and the map of temperature anomalies at the 850 hPa level shows that throughout the study area, the temperature decreases relative to Have experienced the average. Similar conditions were prevalent in the Middle Troposphere (500 hPa). The results of hierarchical clustering showed that the occurrence of thunderstorms is affected by three atmospheric patterns of blocking systems, cut-off-low, and shortwave, among which, cut-of-low with 14 cases, and the main pattern in the occurrence of thunderstorms in western and northwestern Iran. Back trajectory paths selected for thunderstorm days each pattern for 48-hour infiltration of air masses showed that the thunderstorm originated from different systems. The Mediterranean system is the main source of air mass affecting the western and northwestern regions during a thunderstorm, followed by the Sudanese system and the integration system in second and third place.

Conclusion: Thunderstorms are atmospheric phenomena that sometimes cause human and financial losses to humans. The results of this study showed that despite the local and regional nature of thunderstorms and their rarity, it is possible to study the atmospheric circulation conditions and the temperature of the lower and middle troposphere during the days of this phenomenon. The results of the statistical study showed that spring and April and May had the highest frequency of seasonal and monthly occurrence in the study area. Also, in the synoptic study, it was found that the occurrence of thunderstorms in the west and northwest of Iran, not only with sea surface pressure anomalies and 500 hPa but also with negative temperature anomalies in both levels. In the occurrence of thunderstorm atmospheric phenomena in the western and northwestern regions of Iran, atmospheric circulation patterns including blocking systems, cut-off-low, and shortwaves play a role in the middle level of the atmosphere. At the same time, Mediterranean, Sudanese and fusion pressures are forming on the Earth's surface. This adaptation of low surface pressure to high divergence enhances surface convergence and high divergence. This leads to increased vertical transmission and air ascent and instability, eventually leading to hurricanes.

کلیدواژه‌ها [English]

  • Cut-off Low
  • temperature anomalies
  • thunderstorms
  • west and northwest of Iran
  • Adelekan, I. O., 1998, Spatio‐Temporal Variations in Thunderstorm Rainfall over Nigeria. International Journal of Climatology, 18(11): 1273-1284.
  • Ahrens, C. D., Henson, R., 2015, Meteorology Today: An Introduction to Weather, Climate and the Environment, Cengage Learning, 11th edition.
  • Allen, J. T., & Karoly, D. J., 2014, A Climatology of Australian Severe Thunderstorm Environments 1979–2011: inter‐annual variability and ENSO influence. International Journal of Climatology, 34(1): 81-97.
  • Allen, J. T., Karoly, D. J., & Mills, G. A., 2011, A Severe Thunderstorm Climatology for Australia and associated Thunderstorm Environments. Australian Meteorological and Oceanographic Journal 61: 143–158.
  • Aran, M., Pena, J., Tor´a, A., 2011. Atmospheric circulation patterns associated with hail events in Lleida (Catalonia). Atmos. Res. 100, 428–438.
  • Bahrami, S., 2013, Statistical and Synoptic Analysis of Thunderstorm in Kurdistan Province, M.S thesis, University of Mohaghegh Ardabili.
  • Barry, R.G., Hall-McKim, E.A., 2014, Essentials of the Earth’s Climate System, Cambridge University Press
  • Cecil, Daniel J., Dennis E. Buechler, and Richard J. Blakeslee., 2015, "TRMM LIS Climatology of Thunderstorm Occurrence and Conditional Lightning Flash Rates." Journal of Climate, 28(16): 6536-6547.
  • Changnon, S. A., 2001, Thunderstorm Rainfall in the Conterminous United States. Bulletin of the American Meteorological Society, 82(9): 1925-1940
  • Chaudhuri, S., 2008, Identification of the Level of Downdraft Formation during Severe Thunderstorms: a Frequency Domain Analysis. Meteorology and atmospheric physics, 102(1-2): 123-129.
  • Dargahian, F., parn, R., 2016, Analysis Possible to Predict the Likelihood of timely and Issuing the Necessary Knowledge Thunderstorm and Flood in July 2015 in Tehran for Vulnerability Redaction, Environmental Hazards Management, 3(1): 21-31.
  • de Pablo D´avila, F., Rivas Soriano, J., Jiménez Alonso, C., Mora García, M., Riesco Martín, J., 2021., Synoptic patterns of severe hailstorm events in Spain, Atmospheric Research, 250: 105397, 1-13.
  • Galanaki, E., et al., 2018, "Thunderstorm Climatology in the Mediterranean using Cloud-to-Ground Lightning Observations." Atmospheric Research, 207: 136-144.
  • Ghaderi, F., 2015, Analysis of Hail Atmospheric Circulation Patterns in the North Zagros, Ph.D thesis, University of Tabriz.
  • Ghavidel Rahimi, Y., Khoshhal Dastjerdi, J., 2007, Identification of Environmental Hazards Properties in North West Iran: A Case Study of Thunderstorm Hazards in Tabriz, The Journal of Spatial Planning, 11(53):101-116.
  • Jalali, O., Jahani, M., Investigation of Spatial Distribution of Thunderstorms in Northwestern of Iran, Geographical Space, 8(23): 35-58.
  • Karmakar, Samarendra, and Mohan Kumar Das., 2020, "On the Simulation of Lightning and Flash Flood Producing Thunderstorms in the Northeastern Bangladesh." Journal of Engineering Science, 11(1): 133-146.
  • Katarzyna, Suwała., 2013, "The Influence of Atmospheric Circulation on the Occurrence of Hail in the North German Lowlands." Theoretical and Applied Climatology 112(3-4) : 363-373.
  • Khalesi, F., 2014, A Temporal Analysis of Thunderstorms in Iran, Applied Climatology, 1(1): 47-60.
  • Khazaei, M., Modiri, E., Modiri, M., 2015, Synoptic Analysis of Hazardous Thunderstorms in Isfahan, Environmental Hazards Management, 1(2): 203-215.
  • Khorshiddoust, A. M., Asadi, M., Hajmohammadi, H., 2020. Thunderstorm Simulation Using WRF Model in Kermanshah Case Study: March 31, 2014, Journal of Climate Research 11(43), 73-86.
  • koushki, S., 2018, Spatial-Thermodynamic Analysis of Thunderstorms and Reconnaissance of its Susceptible Areas in Iran, Ph.D thesis, Razi University.
  • Lashkari, H., Keykhosravi, Gh., 2010, Thunderstorms and Dust blown during the Statistical Period of 1990-2004 in Hamadan Province, Sepehr, 75: 60-66.
  • Lashkari, H., Yarmoradi, Z., Mousavi, H., 2016, Statistical analysis Synoptic Thunder storms Kohgiluyeh and Boyer Ahmad, Geography and Environmental Studies, 5(18): 135-151.
  • Masoompour samakosh, J., Fajad, A., 2016, Thermodynamic-statistical Analysis of Thunderstorms in Iran, Geography and Regional Development, 13(2): 227-248.
  • Masoompour Samakosh, j., Miri, M., Rahimi, M., 2016, Statistical-Synoptic Analysis of Thunderstorm in the Southern Coast of Iran, Earth and Space Physics, 42(3): 697-708.
  • Melc´on, P., Merino, A., S´anchez, J.L., L´opez, L., García-Ortega, E., 2017. Spatial patterns of thermodynamic conditions of hailstorms in southwestern France. Atmos. Res. 189, 111–126.
  • Michaelides, S. C., Savvidou, K., Nicolaides, K. A., Orphanou, A., Photiou, G., & Kannaouros, C., 2008, Synoptic, Thermodynamic and Agro-economic aspects of Severe Hail Events in Cyprus. Natural Hazards and Earth System Sciences, 8(3): 461-471.
  • Mohammadi, F., Salahi, B., Hemmati, R., 2010, Investigation of Thunderstorms in the West of the Country with the Approach of Reducing Damage to Agricultural Products, The first national conference on sustainable development in arid and semi-arid regions, Abarkooh, Yazd.
  • Mojarrad, F., Koshki, S., Masompour, J., Miri, M., 2018, Analysis of Thunderstorm Instability Indexes in Iran using Reanalysis Data, Spatial Analysis Environmental Hazards, 4(4): 33-48.
  • Molinié, J., & Pontikis, C. A., 1995, A Climatological Study of Tropical Thunderstorm Clouds and Lightning Frequencies on the French Guyana Coast. Geophysical research letters, 22(9): 1085-1088
  • Rasouli, A.A., Javan. Kh., 2012, Analyzing of Thunderstorm Occurrence Trends in the Western Part of Iran Applying Non-Parametric Statistical Tests, Geographical Space, 12(28): 111-126.
  • Schemm, S., Nisi, L., Martinov, A., Leuenberger, D., Martius, O., 2016. On the link between cold fronts and hail in Switzerland. Atmos. Sci. Lett. 17 (5), 315–325.
  • Taszarek, Mateusz, et al., 2018, "Climatological Aspects of Convective Parameters over Europe: a Comparison of ERA-interim and Sounding Data." Journal of Climate, 31(11) : 4281-4308.
  • Tsenova, Boryana, T., Bogatchev, A., 2020, "On the use of Atmospheric Instability Indices based on NWP Model Production for Thunderstorm Forecast".
  • Wapler, K., James, P., 2014. Thunderstorm occurrence and characteristics in Central Europe under different synoptic conditions. Atmos. Res. 158, 1–14.