حساسیت‌سنجی مدل WRF به پیکربندی فیزیکی و فرآیندهای همرفتی در پیش‌بینی فصلی بارش در شمال شرق ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب و هواشناسی دانشگاه تهران، تهران، ایران

2 استاد، گروه آب و هواشناسی دانشکده جغرافیا دانشگاه تهران، تهران، ایران

3 دانشیار، گروه آب و هواشناسی دانشکده جغرافیا دانشگاه تهران، تهران، ایران

4 دانشیار، پژوهشکده هواشناسی و علوم جو، تهران، ایران

چکیده

فرآیندهای همرفتی در مدل‌سازی پیش‌بینی‌های جوی در کنار پارامتر‌‌ی‌سازی های فیزیکی و شرایط اولیه و مرزی همواره موردتوجه است زیرا پیش‌بینی‌های عددی بویژه در مورد بارش با شدت به پارامترسازیهای فیزیکی ازجمله لایه‌مرزی سیاره‌ای، مدل سطح زمین، فرآیندهای همرفتی و ... وابسته است. در این مطالعه داده‌هایCFSv2 ، از مجموعه پیش‌بینی های فصلیNCEP با مدل WRF به مقیاس منطقه‌ای تبدل ( با دامنه های 54، 18 و 6 کیلومتر) و حساسیت پیش‌بینی فصلی بارش توسط مدل تحقیقاتی آب‌وهوا به پارامتری سازی لایه‌مرزی سیاره‌ای و فرآیندهای همرفتی مورد تحلیل قرارگرفته است. با توجه به هدف این مطالعه برای ارزیابی نقش فیزیک لایه‌مرزی سیاره‌ای و پارامترهای همرفت در پیش‌بینی بارش، مدل در 4 گروه اصلی پیکربندی با طرحواره های لایه‌مرزی سیاره‌ایYSU ،MYJ، MYNN3وACM2 و هر گروه با شرایط همرفتیKFT ، BMJ،GF ، KF و عدم پارامترسازی همرفت در دامنه 3 درمجموع تحت 20 سناریوی مختلف پیکربندی از 1 نوامبر 2019 تا 31 می سال 2020 اجرا گردید. ماه اول(نوامبر) به ‌عنوان زمان تطبیق مدل و 6 ماه بعدی مورد تحلیل قرارگرفته است. خروجی پیش‌بینی‌ها نشان می‌دهد که ضرایب همبستگی از 30/0 تا نزدیک به 5/0 برای سناریوهای 20 گانه بدست امده‌است میزان انحراف بارش پیش‌بینی‌شده مدل نسبت به داده‌های مشاهداتی نیز نشان‌دهنده سازگاری نسبی خروجی مدل با پیکربندی‌های انتخابی است. در مجموع می‌توان گفت طرحواره‌های لایه‌مرزی سیاره‌ای YSU همراه با تابش موج‌بلند RRTM، موج‌کوتاه Dudhia و مدل سطح زمین Noah در کنار طرح‌های همرفتی BMJ وKFT توانسته برآوردهایی با خطای کمتری از میزان بارش ارائه کند. نکته قابل توجه دیگر آن است عدم اجرای طرحواره همرفت برای وضوح 6 کیلومتر (دامنه 3) نشان داده است در مقیاس بین 3 تا 10 کیلومتر عملکرد طرحواره‌های همرفتی خاکستری است بدین معنی که اجرا یا عدم اجرای آن می‌تواند نتایج پیش بینی ها را بهبود بخشیده و یا منجر به افزایش خطا در نتایج گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Sensitivity assessment of physical configuration and convective processes in seasonal precipitation forecasting over the northeast of Iran

نویسندگان [English]

  • Elaheh Ghasemi Karakani 1
  • HOSSIN MOHAMMADI 2
  • Ghasem Azizi 2
  • Aliakbar Shamsipour 3
  • Ebrahim Fattahi 4
1 Faculty of Geography University of Tehran
2 Faculty of Geography University of Tehranuniversity
3 Faculty of Geography University of Tehran
4 Atmospheric Science & Meteorological Research Center (ASMRC),
چکیده [English]

Introduction

General circulation models (GCMs) provide valuable forecasts of world precipitation and temperature (Schepen et al., 2020). Through improved Seasonal forecasting in recent years several climates centers around the world provide operational climate Such as; the Climate Forecast System version 2 (CFSv2) by National Centers for Environmental Prediction (NCEP) (Saha et al., 2010), the European Centre for Medium-Range Weather Forecasts (ECMWF (Johnson et al., 2019), and the Geophysical Fluid Dynamics Laboratory (GFDL) (Delworth et al., 2020). These GCM outputs generally need to downscale to use in regional-scale relevant applications and more actionable end-user-oriented climate services. One way to transfer world predictions from GCMs to regional or local scales is dynamical downscaling with RCMs such as Weather Research and Forecasting model (WRF). The Initial and lateral boundary conditions from General Circulation Models (GCMs) drive these models. The mesoscale circulations, topography, and land use-land cover are displayed better by RCMs, and these models improve the extremes and regional climate variable compared to the coarse resolution GCMs. The WRF has been coupled with numerous parameterizations to resolve processes occurring within a grid box. Some research has indicated convective and planetary boundary layer (PBL) schemes have a significant influence on precipitation simulation (Li et al 2017; Njuki, S.M., et al 2021). The WRF Model version 4 provides more than 11 convective schemes and 13 planetary boundary layer (PBL) schemes. This study has attempted to assess a suitable combination of physics schemes of the Weather Research and Forecasting (WRF) model for seasonal precipitation simulation over the northeast of Iran. Using the CFSV2 as Initial and lateral boundary conditions data, simulation experiments from winter to spring in seven months (from November to May) have been performed for 2019-2020). Three nested domains have applied with the outer domain at 54 km resolution and two interdomains at 18 and 6 km resolution.

Material and methods:

The study area is located in the northeast of Iran, and climatologically, most precipitation occurs from winter to spring (November to May). On average, the western part of this region receives approximately 60% of the annual precipitation, while the rest of the areas in the east receive lower precipitation. The real-time forecast data used in this study is the 6-hourly time series from the 9-month runs operational model for seasonal prediction at the NCEP operational CFSv2. The observed precipitation data is extracted from IRIMO. The new Weather Research and Forecasting model (WRF) is applied to determine how varying physical parameterization of PBL scheme configuration processes simulate seasonal (winter and spring) precipitation. For this purpose, four group configurations have been designed.

Group1: convective schemes (KFT, BMJ, GF, KF), Yonsei University PBL (YSU) for the plenary boundary layer, surface layer scheme (Revised MM5), the shortwave radiation scheme (Dudhia), the longwave radiation scheme (RRTM) and land surface models (Noah).Group 2 all four convective schemes, PBL Mellor–Yamada–Janjic (MYJ), RRTMG for long –short radiation, 5-layer thermal diffusion, and Eta for land surface and surface layer. GROUP 3; include second-order Mellor-Yamada-Nakanishi-Niino (MYNN3) as PBL scheme, same shortwave and longwave radiation (New Goddard), the surface layer (MYNN), and land surface (RUC). Finally, group4 set by ACM2 for the plenary boundary layer, The surface layer (Pleim-Xiu), the shortwave and longwave radiation schemes (GFDL), the land surface (PX), four convective schemes have been fixed in all groups. For all WRF simulations, we used the WRF single-moment 6-class microphysics scheme. In this way, a total of 20 simulation sets in 4 groups have run, and one configuration set without any cumulus scheme in domain 3 in each group.

The following statistics, the correlation (R), the root mean square error (RMSE), the mean absolute error (MAE), and bias and four verification skills are calculated from the total daily precipitation over the six months out of the seven-month integration time with the first month used as spin-up.

Results:

The WRF-CFSv2 model performance was evaluated against precipitation observations from Iran's Meteorological organization. The correlation scores between the observed and predicted 6- month and winter precipitation were moderately acceptable (0.3-0.5) however decreased to 0.36 in spring. In terms of bias, group 1 (PBL1,..) configuration have considerably structures than the group4 (PBL7,..), group2 (PBL2,…), and especially group3 (PBL6,..). All configurations showed a wet bias over the study area (-0.8 mm/d, -3.55mm/d) in the 6-month prediction. It is consistent with previous studies using GCMs in this region. The significant MAE of the 6-month precipitations simulated by group 1 and PBL1-CU2، PBL1-CU0, and PBL1-CU1 scenarios were the lowest among the configuration. Meanwhile, this group of configurations showed a similar RMSE score pattern by MAE, and the lowest RMSE showed in group 1 and group 2. In all configurations, the wet bias has been persistent in the study area.

The WRF prediction captured the observed precipitation by groups 2 and 3 with MYJ and MYNN3 planetary boundary layer schemes. However, the false alarm (b) in group 1 and the number of missed events (c) in group 2 of configurations were finer low.



Conclusions

In this study, the WRF model performance was evaluated for various physical parameterizations in predicting precipitation for varying planetary boundary layer (PBL) schemes and Cumulus schemes over northeast Iran.

Based on the sensitivity analysis, is concluded that the set that performs best for the region is YSU PBL, MM5 SL, Dudhia shortwave radiation, RRTM longwave radiation, and Noah LSM schemes.

And using a cumulus scheme for grid resolutions between 3km and 10km is gray, as respects is not clear whether a cumulus scheme should be used or not. So, recommended testing a configuration set of no cumulus scheme mode to determine if using a cumulus scheme is ideal for your particular run.

Keywords:

Seasonal prediction, CFSRV2, WRF, precipitation

کلیدواژه‌ها [English]

  • Seasonal prediction
  • CFSRV2
  • WRF
  • scheme
  • precipitation
  1. Alizadeh-Choobari, O., Qadimi, M., & Marjani, S. (2019). Evaluation of 2-m temperature and precipitation products of the Climate Forecast System version 2 over Iran. Dynamics of Atmospheres and Oceans, 88, 101105.
  2. Barker, H. W., Pincus, R., & Morcrette, J. J. (2002, May). The Monte Carlo independent column approximation: Application within large-scale models. In Proceedings of the GCSS/ARM workshop on the representation of cloud systems in large-scale models (p. 10).
  3. Befort, D. J., Wild, S., Knight, J. R., Lockwood, J. F., Thornton, H. E., Hermanson, L., ... & Leckebusch, G. C. (2019). Seasonal forecast skill for extratropical cyclones and windstorms. Quarterly Journal of the Royal Meteorological Society, 145(718), 92-104.
  4. Betts, A. K., & Miller, M. J. (1993). The betts-miller scheme. In The representation of cumulus convection in numerical models (pp. 107-121). American Meteorological Society, Boston, MA.
  5. Betts, A. K., & Miller, M. J. (1986). A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets. Quarterly Journal of the Royal Meteorological Society, 112(473), 693-709.
  6. Bruno Soares, M.; Dessai, S. Exploring the use of seasonal climate forecasts in Europe through expert elicitation. Clim. Risk Manag. 2015, 10, 8–16.
  7. Cai, Xinli & Wang, Xianli & Jain, Piyush & Flannigan, Mike. (2019). Evaluation of Gridded Precipitation Data and Interpolation Methods for Forest Fire Danger Rating in Alberta, Canada. Journal of Geophysical Research Atmospheres. 124. 10.1029/2018JD028754.
  8. Carvalho, D., Rocha, A., Gómez-Gesteira, M., & Santos, C. (2012). A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environmental Modelling & Software, 33, 23-34.
  9. Chan, S. C., Kendon, E. J., Fowler, H. J., Blenkinsop, S., Ferro, C. A., & Stephenson, D. B. (2013). Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Climate dynamics, 41(5), 1475-1495.
  10. Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly weather review, 129(4), 569-585.
  11. Chou, M. D., & Suarez, M. J. (1999). A solar radiation parameterization for atmospheric studies (No. NASA/TM-1999-104606/VOL15).
  12. Devanand, A., Koll Roxy, M., & Ghosh, S. (2018, April). Role of land-atmospheric processes in CFSv2 monsoon rainfall dry bias over India. In EGU General Assembly Conference Abstracts (p. 950).
  13. Diaz, L. R., Santos, D. C., Käfer, P. S., Iglesias, M. L., da Rocha, N. S., da Costa, S. T. L., ... & Rolim, S. B. A. (2021). Reanalysis profile downscaling with WRF model and sensitivity to PBL parameterization schemes over a subtropical station. Journal of Atmospheric and Solar-Terrestrial Physics, 222, 105724.
  14. Doblas‐Reyes, F. J., García‐Serrano, J., Lienert, F., Biescas, A. P., & Rodrigues, L. R. (2013). Seasonal climate predictability and forecasting: status and prospects. Wiley Interdisciplinary Reviews: Climate Change, 4(4), 245-268. 08. Clim. Dyn. 2012, 39, 2041–2058.
  15. Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences, 46(20), 3077-3107.
  16. Dudhia, J. (1996, July). A multi-layer soil temperature model for MM5. In Preprints, The Sixth PSU/NCAR mesoscale model users’ workshop (pp. 22-24). Boulder, CO, USA: National Center for Atmospheric Research.
  17. Eghbali, A., Babaeian, I., Azadi, M., Habibi Nokhandan, M., & Zarrin, A. (2022). Optimal configuration of RegCM4. 5 model for rainfall forecasting in Iran based on climatic zones (November-May), Case study: 2019-2014. Journal of Climate Research, 1401(49), 1-14.
  18. Fekih, A., & Mohamed, A. (2019). Evaluation of the WRF model on simulating the vertical structure and diurnal cycle of the atmospheric boundary layer over Bordj Badji Mokhtar (southwestern Algeria). Journal of King Saud University-Science, 31(4), 602-611.
  19. Fels, S. B., & Schwarzkopf, M. D. (1981). An efficient, accurate algorithm for calculating CO2 15 μm band cooling rates. Journal of Geophysical Research: Oceans, 86(C2), 1205-1232.
  20. Gao, Shibo & Huang, Danlian & Du, Ningzhu & Ren, Chuanyou & Yu, Haiqiu. (2022). WRF ensemble dynamical downscaling of precipitation over China using different cumulus convective schemes. Atmospheric Research. 271. 106116. 10.1016/j.atmosres.2022.106116.
  21. García‐Díez, M., Fernández, J., Fita, L., & Yagüe, C. (2013). Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Quarterly Journal of the Royal Meteorological Society, 139(671), 501-514.
  22. Gholami, S., Ghader, S., Khaleghi Zavareh, H., & Ghafarian, P. (2019). Sensitivity of the WRF model surface wind simulations to initial conditions and planetary boundary layer parameterization schemes (case study: over Persian Gulf). Iranian Journal of Geophysics, 13(1), 14-31.
  23. Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14), 38-1.
  24. Grell, G. A., & Freitas, S. R. (2014). A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 14(10), 5233-5250.
  25. Hari Prasad, K. B. R. R., Ramu, D. A.,Rao, S. A., Hameed, S. N., Samanta, D., & Srivastava, A. (2021). Reducing systematic biases over the Indian region in CFS V2 by dynamical downscaling. Earth and Space Science, 8, e2020EA001507. https://doi. org/10.1029/2020EA001507.
  26. Hosseini Pazhouh, N., Ahmadaali, K., & Shokoohi, A. (2019). Assessment of standardized precipitation and standardized precipitation-evapotranspiration indices for wet period detection. Journal of Water and Soil Conservation, 25(6), 207-221. doi: 10.22069/jwsc.2019.15175.3036
  27. Hong, S. Y., & Lim, J. O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129-151.
  28. Janjić, Z. I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly weather review, 122(5), 927-945.
  29. Janjic, Z. I. (1996). The surface layer parameterization in the NCEP Eta Model. World Meteorological Organization-Publications-WMO TD, 4-16.
  30. Jeworrek, J., West, G., & Stull, R. (2019). Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone. Weather and Forecasting, 34(4), 1097-1115.
  31. Jiménez, P. A., & Dudhia, J. (2012). Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. Journal of Applied Meteorology and Climatology, 51(2), 300-316.
  32. Kain, J. S. (2004). The Kain–Fritsch convective parameterization: an update. Journal of applied meteorology, 43(1), 170-181.
  33. Kain, J. S., & Fritsch, J. M. (1993). Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In The representation of cumulus convection in numerical models (pp. 165-170).
  34. Liu, X., Zhang, L., She, D., Chen, J., Xia, J., Chen, X., & Zhao, T. (2022). Postprocessing of hydrometeorological ensemble forecasts based on multisource precipitation in Ganjiang River basin, China. Journal of Hydrology, 605, 127323.
  35. Manzanas, R., Gutiérrez, J. M., Fernلndez, J., Meijgaard, E. V., Calmanti, S., Magarino, M. E., et al. (2018). Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Climate Service, 9, 44–56. https://doi. org/10.1016/j.cliser.2017.06.004.
  36. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663-16682.
  37. Moradi, S., Javanmard, S., Ghader, S., Azadi, M., & Gharayloo, M. (2020). The most effective scheme in improving the performance of the WRF model for precipitation over northwest Iran. Journal of Meteorology and Atmospheric Science, 3(3), 188-200. doi: 10.22034/jmas.2021.286905.1138
  38. Mousavi, S. M., AkhondAli, A. M., & Shahbazi, A. (2019). Evaluation of CFSv2 Enssmble Precipitation Forecasts with Water Resources Management Application Perspective (Case Study: Dez Dam River Basin). Iran-Water Resources Research, 15(4), 92-106.
  39. Musa, A. I., Tsubo, M., Ma, S., Kurosaki, Y., Ibaraki, Y., & Ali-Babiker, I. E. A. (2022). Evaluation of WRF Cumulus Parameterization Schemes for the Hot Climate of Sudan Emphasizing Crop Growing Seasons. Atmosphere, 13(4), 572.
  40. Nakanishi, M., & Niino, H. (2004). An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Boundary-layer meteorology, 112(1), 1-31.
  41. Nakanishi, M., & Niino, H. (2006). An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorology, 119(2), 397-407.
  42. Ndhlovu, G. Z., & Woyessa, Y. E. (2021). Use of gridded climate data for hydrological modelling in the Zambezi River Basin, Southern Africa. Journal of Hydrology, 602, 126749.
  43. Nurmi P. Recommendations on the verification of local weather forecasts. ECMWF Tech. Memo; 2003. http://www.ecmwf.int/sites/default/files/elibrary/2003/11401-recommendations-verification-local-weatherforecasts.
  44. Ojrzyńska, H., Kryza, M., Wałaszek, K., Szymanowski, M., Werner, M., & Dore, A. (2016). High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate Model for the Area of Poland. Part 2: Model Performance with Respect to Automatically Derived Circulation Types. Pure and Applied Geophysics, 174, 527-550.
  45. Onwukwe, C., & Jackson, P. L. (2020). Meteorological downscaling with wrf model, version 4.0, and comparative evaluation of planetary boundary layer schemes over a complex coastal airshed. Journal of Applied Meteorology and Climatology, 59(8), 1295-1319.
  46. Pal, S., Chang, H. I., Castro, C. L., & Dominguez, F. (2019). Credibility of convection-permitting modeling to improve seasonal precipitation forecasting in the southwestern United States. Frontiers in Earth Science, 7, 11.
  47. Pleim, J. E. (2007). A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. Journal of Applied Meteorology and Climatology, 46(9), 1383-1395.
  48. Rajendran, K., Surendran, S., Varghese, S. J., & Chakraborty, A. (2021). Do seasonal forecasts of Indian summer monsoon rainfall show better skill with February initial conditions? Current Science (00113891), 120(12).
  49. Ruane, A. C., & Roads, J. O. (2008). Diurnal to annual precipitation sensitivity to convective and land surface schemes. Earth Interactions, 12(5), 1-13.
  50. Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., ... & Becker, E. (2014). The NCEP climate forecast system version 2. Journal of climate, 27(6), 2185-2208.
  51. Samanta, D., Hameed, S. N., Jin, D., Thilakan, V., Ganai, M., Rao, S. A., & Deshpande, M. (2018). Impact of a narrow coastal Bay of Bengal sea surface temperature front on an Indian summer monsoon simulation. Scientific Reports, 8, 1–12. https://doi.org/10.1038/s41598-018-35735-3
  52. Sangelantoni, L., Ricchi, A., Ferretti, R., & Redaelli, G. (2021). Dynamical Downscaling in Seasonal Climate Forecasts: Comparison between RegCM-and WRF-Based Approaches. Atmosphere, 12(6), 757.
  53. Shabanpour, F., Bazrafshan, J., & Araghinejad, S. (2021). Evaluation of the effect of bias correction methods on the skill of seasonal precipitation forecasts of CFSv2 climate model, Iranian Journal of Soil and Water Research, 51(12), 3017-3032. magiran.com/p2303296
  54. Smirnova, T. G., Brown, J. M., & Benjamin, S. G. (1997). Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Monthly Weather Review, 125(8), 1870-1884.
  55. Smirnova, T. G., Brown, J. M., Benjamin, S. G., & Kim, D. (2000). Parameterization of cold‐season processes in the MAPS land‐surface scheme. Journal of Geophysical Research: Atmospheres, 105(D3), 4077-4086.
  56. Stull, R. B. (1988). An introduction to boundary layer meteorology (Vol. 13). Springer Science & Business Media.
  57. Tang, S., Qiao, S., Feng, T., Fu, Z., Zhang, Z., & Feng, G. (2022). Predictability of the record-breaking rainfall over the Yangtze and Huaihe River valley in 2020 summer by the NCEP CFSv2. Atmospheric Research, 266, 105956.
  58. Tian, D., Wood, E. F., & Yuan, X. (2017). CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States. Hydrology and Earth System Sciences, 21(3), 1477-1490.
  59. Van Lipzig, N., & Prein–nicole, A. (2015). A review on regional convection permitting climate modeling: demonstrations, prospects, and challenges. CLM Assembly, Date: 2015/09/01-2015/09/01, Location: Luxembourg.
  60. Wagner, A., Heinzeller, D., Wagner, S., Rummler, T., & Kunstmann, H. (2018). Explicit convection and scale-aware cumulus parameterizations: High-resolution simulations over areas of different topography in Germany. Monthly Weather Review, 146(6), 1925-1944.
  61. Weisheimer, A.; Befort, D.J.; Macleod, D.; Palmer, T.; Reilly, C.O.; Strømmen, K. Seasonal Forecasts of the Twentieth Century. Bull. Am. Meteorol. Soc. 2020, 101, 1413–1426.
  62. WRF-NMM V4: User’s Guide WRF-ARW User’s Guide. http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.1/contents.html
  63. Xiu, A., & Pleim, J. E. (2001). Development of a land surface model. Part I: Application in a mesoscale meteorological model. Journal of Applied Meteorology and Climatology, 40(2), 192-209.
  64. Yan, D., Liu, T., Dong, W., Liao, X., Luo, S., Wu, K., & Wen, X. (2020). Integrating remote sensing data with WRF model for improved 2-m temperature and humidity simulations in China. Dynamics of Atmospheres and Oceans, 89, 101127
  65. Yuan, X., Liang, X. Z., & Wood, E. F. (2012). WRF ensemble downscaling seasonal forecasts of China winter precipitation during 1982–2008. Climate dynamics, 39(7), 2041-2058.
  66. Zhang, Y., Ye, A., Nguyen, P., Analui, B., Sorooshian, S., & Hsu, K. (2022). QRF4P‐NRT Probabilistic Post‐processing of Near‐real‐time Satellite Precipitation Estimates using Quantile Regression Forests. Water Resources Research, e2022WR032117.
  67. Zittis, G., Hadjinicolaou, P., & Lelieveld, J. (2014). Comparison of WRF model physics parameterizations over the MENA-CORDEX domain. American Journal of Climate Change, 3(05), 490.