تحلیل روند ماهانه تغییرات تبخیر- تعرق در اقلیم‌های مختلف ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد آبیاری زهکشی دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار آبیاری زهکشی دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 دانشیار هوا شناسی کشاورزی دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

برآورد تبخیر- تعرق پتانسیل از اهمیت فراوانی در مدیریت منابع آب برخوردار است. با توجه به اهمیت تعیین روند تبخیر- تعرق در برنامه‌ریزی منابع آب، در این مطالعه، روند تغییرات ماهانه تبخیر- تعرق در ۷۹ ایستگاه در پهنه‌ی جغرافیایی ایران بررسی گردید. با تحلیل پراکنش مکانی تبخیر- تعرق با استفاده از سامانه اطلاعات جغرافیایی، روند تغییرات آن نیز مورد بررسی قرار گرفت. نتایج تحلیل روند تبخیر- تعرق طی سال‎های 1995 تا 2016 و پیاده‎سازی آزمون من-کندال و شیب خط سن به صورت ماهانه نشان داد که روند حاکم بر این ایستگاه‎ها طی ماه‎های مختلف سال از الگوی یکسانی تبعیت نمی‌کند؛ به نحوی که بعضی از ایستگاه‎ها در سراسر سال فاقد روند هستند و بعضی دیگر در بعضی ماه‌ها دارای روند صعودی و در ماه‌های دیگر بدون روند می‌باشند. بعضی از ایستگاه‎ها در بعضی ماه‌ها دارای روند معنادار نزولی و در ماه‌های دیگر فاقد روند هستند. روند افزایشی بیشتر در مناطق سردسیر و نواحی کوهستانی کشور به چشم می‌خورد اما روند کاهشی در مناطق گرمسیر مرکزی و شرقی کشور وجود دارد. در نگاه کلی‌تر، درصد ایستگاه‌های بدون روند از حدود ۶۸ درصد در فصل تابستان تا حدود ۸۶ درصد در فصل پاییز تغییر می‌کند. به طور متوسط، حدود ۷۸ درصد ایستگاه‌ها دارای وضعیت ثابتی در پدیده تبخیر- تعرق بوده‌اند. از میان ۲۲ درصد باقیمانده ایستگاه‌ها، حدود ۱۵ درصد دارای روند افزایشی هستند و این روند افزایشی، بیشتر به فصول بهار و تابستان باز‌می‌گردد. این بدان معنی است که نیاز آبی گیاهان در فصولی که بارندگی کمتر است، رو به افزایش است.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the Monthly Trend of Evapotranspiration Changes in Different Climates of Iran

نویسندگان [English]

  • Mansoureh Ahmadi karladani 1
  • Aboutaleb Hezarjaribi 2
  • Khalil Ghorbani 3
1 Water Engineering Group. Gorgan University of Agricultural Sciences and Natural Resources.
2 Water Engineering Group.Gorgan University of Agricultural Scinces and Natural Resources.Iran, gorgan
3 Water Engineering Group.Gorgan University of Agriculture Scinces Natural Resources.Iran,gorgan
چکیده [English]

Introduction

Global warming due to greenhouse gas emissions is leading to changes in the spatial and temporal distribution of water resources on a global scale. On the other hand, as Iran is located in an arid and semi-arid climatic region, about 75% of rainfall in the country is directly returned to the atmosphere through evaporation. Since potential evapotranspiration is one of the most important components of the natural water cycle and is the identification of plant water requirement, its exact estimation plays a key role in the planning related to the type of cultivation and irrigation. Based on the literature, the Mann-Kendall test has been used repeatedly to examine the trend of changes in meteorological components. Considering the importance of determining the trend of evapotranspiration changes in water resources planning, the purpose of this study is its investigation in a monthly timescale using Mann-Kendall test and the Sen’s estimator slope in Iran. In addition, by analyzing the spatial distribution of evapotranspiration using the GIS, the trend of evapotranspiration changes was also examined.

Materials and methods:

The study area in this research includes 79 appropriately distributed synoptic meteorological stations with acceptable data quality which belong to the Irainan Meteorological Organization. Their common statistical period is 22 years (1995 to 2016). From a geographical point of view, Iran is located in the northern hemisphere between 25 and 40 degrees north latitude and between 44 and 63.5 degrees east longitude. It has a dominant arid and semi-arid climate with low rainfall and high evapotranspiration. After selecting synoptic stations, the required data including geographical coordinates of stations, altitude, daily temperature (minimum, maximum, and average), wind speed, and sunshine hours were collected for the common time period (1995 to 2016). Then, the potential evapotranspiration was calculated using Hargreaves-Samani method and the total monthly evapotranspiration was extracted for the desired time period. By performing the Mann-Kendall test, the trend of evapotranspiration variation has been estimated and the significance of this trend has been analyzed using the Sen’s estimator slope.

Results and discussion:

The results of this study obtained by the analysis of the evapotranspiration trend during 1995 to 2016 and implementing the Mann-Kendall test and the Sen’s estimator slope on a monthly time scale show that the trend does not follow the same pattern during different months of the year. In terms of time, in spring and summer, significant increasing trends have been seen in most cases where its highest were in June. In July, different climates of Iran have a significant increasing trend. Due to low rainfall in this month and sensitive conditions, this increasing trend of evaporation can raise the demand for water resources and in some cases reduce the yield of agricultural products. In August and September, despite the oppressive heat, in most of central and southern parts of the country, with a hot and dry climate, there was a decreasing trend of evapotranspiration. At the beginning of autumn and in October, the central parts of Iran had a significant downward trend, but in November and December, the existence of significant trends is much less. In winter, there is no trend in most stations. Generally speaking, the most significant increasing trends have occurred in the warm months of the year. Due to the decrease in precipitation oscillations and increase of temperature in these months, increase of evaporation has raised the water needs for agricultural products. Thus, the failure in its management will lead to a shortage of available water and damage to agriculture by the reduction of crop efficiency and yield. From spatial viewpoint, there is a more increasing trend in the cold regions and mountainous areas of the country and a negative trend has appeared in the tropical, central and eastern regions. In general, the percentage of non-trending stations varies from about 68% in summer to about 86% in autumn, and on average, about 78% of stations have a steady state about the evapotranspiration. Of the remaining 22% of stations, most (about 15%) have an increasing trend, and this goes back to the spring and summer seasons. This means that the plants’ water requirement is increasing when there is less rainfall, which is consistent with the conditions created by climate change, which leads to more severe drought events in arid areas.

کلیدواژه‌ها [English]

  • Climate change
  • Evapotranspiration
  • Mann-Kendall test
  • Trend analysis
  1. Alizadeh, A. 2011. Principles of Applied Hydrology. Mashhad Ferdowsi University. 942.
  2. Asadzadeh, F., Kaki, M., Shakiba, S. 2017. Trends analysis of reference evaporation in the synoptic sites of Kurdistan province using Spearman’s test. Journal of Iran-Water Resources Research, No.13(1). pp. 216-222. (In farsi)
  3. Atae, H., Tashakori Hashemi, A., Raveian, M. 2020. Analysis of the trend of evapotranspiration of reference crop at synoptic stations of Khorasan Razavi province. Jornal of Climatological Research Institute, No. 38(38). pp. 113-129. (In farsi)
  4. Azizzadeh, M., Javan, K. 2015. Analyzing trends in reference evapotranspiration in northwest part of Iran. Journal of Ecological Engineering, No. 16(2). pp. 1-12. (In farsi)
  5. Burn, D. H., Hesch, N. M. 2007. Trends in evaporation for the Canadian Prairies. Jornal of Hydrology, No. 336(1-2). pp. 61-73.
  6. Chen, H., Guo, S., Xu, C.Y., Singh, V.P. 2007. Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. Journal of Hydrology, No. 344. pp. 171-184.
  7. Dolatshahi, A., Attarod, p., Zahedi, GH., Sadeghi, M., Bayramzadeh, V. 2017. Trends of meteorological parameters and reference evapotranspiration in the northern Zagros region. Jornal of Forest And wood product, No. 70(2). pp. 251-260. (In farsi)
  8. Foroghi, M., Dinpashoh, Y., Jahanbakhsh Asl, S. 2019. Impact of Climate Change on Reference Crop Evapotranspiration Trends in the west rejoin of Iran. Jornal of Climatological Research Institute, No. 37(37). pp. 21-37. (In farsi)
  9. Gellens, D., 2000. Trend and Correlation Analysis of k-Day Extreme Precipitation over Belgium. Theoretical and Applied Climatology, No. 66. pp. 117-129
  10. Ghorbani, Kh. 2015. Spatial and seasonal pattern in climate change, temperatures across Iran. Journal of Water and Soil Conservation, No. 21(5). pp. 257-270. (In farsi)
  11. Hamed, K.H., Rao A.R. 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrol, No. 204. pp. 182-196.
  12. Hargreaves, G. H., and Samani, Z. A. 1985. Reference crop evapotranspiration from temperature. Applied engineering in agriculture, No. 1(2). pp. 96-99.
  13. Jaiswal, R.K., Lohani, A.K., Tiwari, H.L. 2015. Statistical analysis for change detection and trend assessment in climatological parameters. Environmental Processes, No. 2(4). pp. 729-749.
  14. Jhajharia D., Dinpashoh. Y., Kahya. E., Singh V.P., Fakheri-Fard A. 2012. Trend in reference evapotranspiration in the humid region of northeast India. Hydrological Processes, No. 26(3). pp. 421-435.
  15. Kahya, E., Kalayci, S. 2004. Trend analysis of streamflow in Turkey, Journal of Hydrology, No. 289. pp. 128-144.
  16. Kendall, M.G. 1975. Rank Auto-correlation Methods, Charles Griffin, London.
  17. Li, Z.L, Xu, Z.X., Li, J.Y., Li, Z.J. 2008. Shift trend and step changes for runoff time series in the Shiyang River basin, northwest China. Hydrological Processes, No. 22(23). pp. 4639-4646.
  18. Mahdavie Nezhad, E., Hosseini, Z., Maleki Nezhad, H., Asadi, M.A. 2019. Study of Effect of Climate Change on Potential Evapotranspiration in Arid Areas using Geostatistics (Case study: Yazd province). Jornal of Desert Management, No. 6(12). pp. 1-18. (In farsi)
  19. Mann, H.B. 1945. Nonparametric Tests Against Trend, Econometrica. Journal of the Econometric Society. No. 13(3). pp. 245-259.
  20. Masoompour Samakosh, J., Rajae, S,. Yeganehfar, M. 2014. Temprtal- Spatial variability and evapotranspiration process of reference plant in Iran. Jornal of Applied Research in Geographical Sciences, No. 34(14). pp. 7-25. (In farsi)
  21. Raude, J.M., Wambua, R.M., Mutua, B.M. 2018. Detection of spatial, temporal and trend of meteorological drought using standardized precipitation index (spi) and effective drought index (edi) in the upper Tana river basin. Jornal of Hydrologi, No. 8(3). pp. 83-100.
  22. Samani, Z. 2000. Estimating solar radiation and evapotranspiration using minimum climatological data. Journal of irrigation and drainage engineering, No. 126(4). pp. 265-267.
  23. Sen, P. K. 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, No. 63(324). pp. 1379-1389.
  24. Sun, S., Chen, H., Sun, G., Ju, W., Wang, G., Li, X., Hua, W. (2017). Attributing the changes in reference evapotranspiration in Southwestern China using a new separation method. Journal of Hydrometeorology, No. 18(3). pp. 777-798.
  25. Tabari, H., Marofi, S., Aeini, A., Talaee, P.H. Mohammadi, K., 2011, Trend Analysis of reference evapotranspiration in the western half of Iran. Agricultural and Forest Meteorology, No. 151(2). pp. 128-136.
  26. Torkaman, M., Noroozi, A.A., Homaee, M. 2019. Analysis of the Trends of Climate Parameters Using Mann Kendal Test (TFPW-MK) In Khuzestan Province. Journal of Environmental Sciences Studies, No. 4(1). pp. 884-895. (In farsi)
  27. Vlizdeh Kamran, Kh. 2014. Estimation of Potential Evapotranspiration with Estefnz Method and GIS Techniques in Eastern Azerbaijan. Jornal of Geography and Planning, No. 18(9). pp. 317-334. (In farsi)
  28. Wang, X.M., Liu, H.J., Zhang, L.W., Zhang, R.H. 2014. Climate change trend and its effects on reference evapotranspiration at Linhe Station, Hetao Irrigation District. Water Science and Engineering, No. 7(3). pp. 250-266.
  29. Wang, Y., Jiang, T., Bothe, O., Fraedrich, K. 2007. Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theoretical and Applied Climatology, No. 90(1). pp. 13-23.
  30. Xing, W., Wang, W., Shao, Q., Peng, S., Yu, Z., Yong, B., & Taylor, J. 2014. Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble. Global and Planetary Change, No. 115. pp. 1-15.
  31. Xu, S., Yu, Z., Yang, C., Ji, X., Zhang, K. 2018. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agricultural and forest meteorology, No. 263. pp. 118-129.
  32. Yaning C., Changchun X., Xingming H., Weihong L., Yapeng C., Chenggang Z., Zhaoxia Y. 2009. Fifty-yearclimate change and its effect on annual runoff in the Tarim River Basin, China. Quaternary Int, No. 208(1-2). pp. 53-61

 

  1. Yue S., Pilon P., Phinney B., Cavadias G. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series, Hydrological Processes, No. 16(9). pp. 1807-1829.
  2. Zhang, X., L.A. Vincent, W.D. Hogg and A. Niitsoo, 2000. Temperature and rainfall trends in Canada during the 20th century. Atmospheric Ocean, No. 38(3). pp. 395-429