بررسی تبخیروتعرق واقعی شهرهای استان مازندران با استفاده از الگوریتم سبال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده محیط‌زیست دانشگاه تهران، تهران، ایران

2 دانشجوی دکتری محیط‌زیست، دانشگاه تهران، تهران، ایران

چکیده

زمینه و هدف: تبخیروتعرق، یکی از مهم‌ترین عوامل در چرخه آب بشمار می‌آید. به‌وسیله تبخیروتعرق می‌توان تغییرات اقلیمی را بررسی کرد که یکی از عوامل مهم در برنامه‌ریزی منابع آبی، طرح‌های کشاورزی و بررسی روند خشک‌سالی به‌حساب می‌آید. هدف این پژوهش بررسی تبخیروتعرق شهرهای استان مازندران با استفاده از الگوریتم سبال بوده که با استفاده فنّاوری سنجش‌ازدور و تصاویر ماهواره‌ای لندست و GIS انجام‌گرفته است.

روش تحقیق: به‌منظور تهیه نقشه‌های رطوبت خاک، دمای خاک، دمای سطح زمین (LST)، پوشش گیاهی و شاخص سبزینگی گیاهی از تصاویر ماهواره‌ای لندست و از الگوریتم‌ سبال به‌منظور تهیه نقشه تبخیروتعرق استفاده گردید. داده‌های موردبررسی قرارگرفته از سایت ناسا در دوره آماری 2000 الی 2020 میلادی است. همچنین در اﯾﻦ ﻣﻄﺎﻟﻌﻪ از نرم‌افزار ARC GIS 10,5 و نرم‌افزارهای ERDAS،ENVI5.3 و IDRISI به‌منظور اﻧﺠﺎم ﭘﺮدازش، تجزیه‌وتحلیل ﺗﺼﺎوﯾﺮ سنجنده ﻟﻨﺪﺳﺖ استفاده گردید

بحث و نتیجه‌گیری: نتایج نشان می‌دهد از سال 2010 عوامل موردبررسی ازجمله دمای سطح زمین، دمای خاک زمین، رطوبت خاک، پوشش گیاهی افزایش پیداکرده است. همچنین نتایج تبخیروتعرق نشان داد ماه اول بررسی (ماه مارس برای سال‌های 2002 و 2012 و ماه مه برای سال 2018 و ماه آوریل برای الباقی سال‌های موردبررسی) دارای تبخیروتعرق بالایی بوده است و از سال 2010 به بعد تمام ماه‌ها پیکسل‌های قرمز و نارنجی تمام محدوده موردبررسی را فراگرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating actual evaporation and transpiration of cities in Mazandaran province using Sabal algorithm

نویسندگان [English]

  • mohamadjavad amiri 1
  • Ali Sayyadi 2
1
2 Ph. D student in Environmental Planning, University of Tehran, Tehran, Iran.
چکیده [English]

Introduction

Evapotranspiration is one of the crucial parts of the water cycle balance. In Iran, the total annual rainfall is estimated at 413 billion cubic meters. According to an analysis, 296 billion cubic meters, or 72% of this amount, became out of reach due to evapotranspiration. Accurate estimation of evapotranspiration plays a crucial role in studies on the issues such as global climate changes, environmental evolution, and control of water resources. Due to the limited number of meteorological stations and the high costs and time of collecting ground data, using remote sensing techniques and satellite images to have accurate and appropriate outputs can be a suitable tool to determine the actual evapotranspiration rate. One remote sensing algorithm for estimating evapotranspiration is the Surface Energy Balance (SEBAL).



Methodology

The SEBAL is a model based on image processing that includes twenty-five models for calculating the evapotranspiration (ET) rate as the remainder of the Earth's surface energy balance. This model was introduced by Bastiansen in the Netherlands and also developed for the Idaho Highlands based on measured evapotranspiration at ground level. The SEBAL model uses digital image information captured by the Landsat satellite or other remote sensing sensors capable of recording thermal infrared and visible and near-infrared radiations. The ET value per pixel (e.g., in 30 by 30 square meters of TM and ETM Landsat images) is calculated for the specific moment at which the photo is taken.

The ET value will equal the net radiation minus the heat entering the soil minus the heat entering the air. Further details of this model have been provided by Bastiansen et al., but the general equation used by the SEBAL is as follows:

LE = Rn – H – G

Where LE is the latent heat flux (Wm-2), which can be easily converted to ET; Rn is the net solar radiation (Wm-2); H is the sensible heat flux (Wm-2), and G is the ground or soil heat flux (Wm-2). From this formula, the formula can be inferred that the radiation that reaches the Earth's surface from the atmosphere is separated into three parts: a part of the Earth or soil is heated, another part of it near the surface of the Earth is heated, and the rest of the remaining energy is evaporated. The SEBAL aims to calculate the latent heat flux (ET), considering the actual ET. It should be noted that the essential accuracy of the results is for the LE or ET. It is affected by the accuracy of the shortwave band as well as the thermal band of the satellite. In the following equation, the net radiation from the surface energy equilibrium equation is calculated as:

Rn= (1-α) Rs + (Lin-Lout)

Where a is the surface albedo; Rs is the solar radiation (Wm-2); e is the reflection of the Earth's surface (emission), and Lin-Lout is the radiations entering and leaving the Earth in the form of long waves. A value is obtained by mixing spectral reflections from six shortwave bands on the Landsat satellite. Lin-Lout is also considered a function of the surface temperature, which can be extracted from the satellite image. The value of e is obtained by plant indices created from two short-wavelength bands. The potential importance of Rs per pixel with a definite slope can be determined using the precise sky theory curves. The soil heat flux or G can be obtained empirically using Bastiansen's et al. (1998).



Discussion and Conclusion

According to the results obtained from analyzing the data and output maps captured by the Landsat satellite, and considering the LST map, in which green color indicates a deficiency and red color represents very high, there was an oscillating trend from 2000 to 2008. Still, according to LST maps, since 2010, there has been a sharp incremental trend, the peak of which has been in 2020, and the LST has reached its highest level. Such a trend has also been seen concerning the soil temperature map of Mazandaran province. A remarkable point about the increase in soil temperature is that it was significant and instantaneous in the fifth month of 2010, and the soil surface temperature has increased, just as in the LST, since 2010. Regarding the NDVI map of Mazandaran province, significant and impressive changes have occurred since 2012, and this trend has risen from this year until 2020. According to the maps obtained from the soil moisture in the province, the data show that oscillating changes occurred until 2012, and since the fourth month of 2012, the region's soil moisture has also increased. All the factors mentioned have a direct relationship with evapotranspiration. According to the results obtained and the increasing trends, especially from 2010 to 2020, there is expected to be an increasing trend for evapotranspiration using the SEBAL algorithm. The primary outcome of this research, which studies the changes in the evapotranspiration rates in Mazandaran province, is that: as expected, due to the increase in all the factors affecting the evapotranspiration increase, the results show that since 2010 the evapotranspiration trend has dramatically increased; Of course, due to the geographical location and proximity to the Caspian Sea, the evapotranspiration has always been relatively high, but there have been significant changes and a sharp increase from 2010 to 2020.

کلیدواژه‌ها [English]

  • LST
  • NDVI؛ remote sensing؛ soil temperature؛ soil moisture
  1. Alizadeh A, Kamali G. 2006. Water demand in Iran, Imam Reza University Press, Mashhad.
  2. Bastiaanssen WG, Menenti M, Feddes RA, Holtslag AAM. 1998. A remote sensing surface energy balance algorithm forland (SEBAL). 1. Formulation. Journal of hydrology, 212, 198-212.
  3. Bastiaanssen WG, Pelgrum H,Wang J, Ma Y, Moreno JF, Roerink GJ, Van der Wal T. 1998. A remote sensing surface energy balance algorithm for land (SEBAL).Part 2, Validation. Journal of hydrology, 212, 213-229.
  4. Bastiaanssen WG, Allen R, Tasumi M, Trezza R, Waters R. 2002. SEBAL, Surface Energy Balance Algorithms for Land, Idaho Implementation, Advanced training and user manual. NASA EOSDIS/Synergy grant from the Raytheon Company through The Idaho Department of Water Resources.
  5. Brisco B, Brown RJ, Hirose T, McNairn H, Staenz K. 2014. Precision agriculture and the role of remote sensing: a review. Can. J. Rem. Sens, 24, 315–327. http://dx.doi.org/10.1080/07038992.1998.10855254.
  6. Chander G, Markham B, Helder D. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment. 113. 893-903. https://doi.org/10.1016/j.rse.2009.01.007.
  7. Ehteramian K, Shahabfar A, Nazem Alsadat SM.2003. Prediction of Drought Conditions Using Normalized Difference Vegetation Index (NDVI) in Iran, Geomatics Conference 82.
  8. Gong P, Pu R. 2012. Retrieval of Land Surface Temperature from Remote Sensing Thermal Images. Berkeley, USA: University of California.
  9. Jia L, Xi G, Liu S, Huang C, Yan Y, Liu Y. 2009. Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland. Hydrology and. Earth System Science, 13, 1775– 1787.
  10. Karbasi M, Moghaddam M, Nikbakht J, Kaviani A. 2016. Estimation of crop actual evapotranspiration using SEBAL algorithm (Case study: Khoramdareh region at Zanjan province), Journal of Echo Hydrology, 3 (3). 427-437. (In Farsi with English abstract).
  11. Liu S, Bai J, Jia Z, Jia L, Zhou H, Lu L. 2010. Estimation of evapotranspiration in the MuUs Sandland of China. Hydrol. Earth Syst. Sci. (14), 573–584.
  12. Lopes JD, Rodrigues LN, Acioli Imbuzeiro HM, Pruski FF. 2019. Performance of SSEBop model for estimating wheat actual evapotranspiration in theBrazilian Savannah region. International Journal of Remote Sensing, 40(18), 6930-6947. http://dx.doi.org/10.1080/01431161.2019.1597304
  13. Mohseni Saruri M, Ahmadi H, Nosrati K. 2010. Application of Sebal model in estimating evapotranspiration in Taleghan catchment area, The first International Conference on Plant, Water, Soil and Weather Modeling, November, International Center for Advanced Science and Technology and Environmental Sciences. (In Farsi with English abstract).
  14. Nikam B.R, Kumar P, Garg V, Thakur P. K, Aggarwal, S. P. 2014. Comparative Evaluation Of Different Potential Evapotranspiration Estimation Approaches. International Journal of Research in Engineering and Technology, 3(06), 544-552.

 

  1. Papadavid G, Hadjimitsis DG, Toulios L, Michaelides S. 2013. A modified SEBAL modeling approach for estimating crop evapotranspiration in semi-arid conditions. Water resources management, 27(9).3493-3506.
  2. Rajeshwari A, Mani N.D. 2014. Estimation of land surface temperature of Dindigul district using Landsat 8 data. International Journal of Research in Engineering and Technology.3.122-126. https://ijret.org/volumes/2014v03/i05/IJRET20140305025.pdf.
  3. Remote Sensing Research Center (RSRC).2015. Estimation of evapotranspiration, costs and the amount of water saving in agriculture (case study: Urmia Lake basin for 2010), EWRC in Sharif university of Technology.
  4. Sanaeinejad H, NASSIRI M.M, Zare H, Salehnia N, Ghaemi M. 2014. Wheat yield
    estimation using Landsat images and field observation: A case study in Mashhad. Journal of agricultural sciences and natural resources, 20(4), 45-63
  5. Shahedi K, Zarei M.2010. Evaluation of potential evapotranspiration estimation methods in Mazandaran province. Iranian Journal of Irrigation and Water Engineering. 12-21. (In Farsi with English abstract).
  6. Szabó S, Elemér L, Kovács Z, Püspöki Z, Kertész A, Kumar Singh S, Balázs B. 2019. NDVI dynamics as reflected in climatic variables: spatial and temporal trends – a case study of Hungary. GIScience & Remote Sensing, 56(4), 624-644. http://dx.doi.org 10.1080/15481603.2018.1560686.
  7. Van De Griend A, Owe M. 1993.On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces.International Journal of Remote Sensing. 14. 1119-1131.(https://doi.org/10.1080/01431169308904400).