تخمین پتانسیل تولید گندم و جو زمستانۀ آبی به روش فائو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ‌التحصیل دکتری اکولوژی گیاهان زراعی، گروه زراعت و اصلاح نباتات، دانشکدۀ علوم و مهندسی کشاورزی، دانشگاه تهران، کرج، ایران

2 استاد گروه علوم و مهندسی خاک، دانشگاه تهران، کرج، ایران

3 استاد گروه زراعت و اصلاح نباتات، دانشگاه تهران، کرج، ایران

4 فارغ‌التحصیل کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشگاه تهران، کرج، ایران

چکیده

تولید بالقوه به عملکرد رقمی از یک محصول در یک محیط معین با منابع رشد کافی و عاری از آفات و بیماری‌ها اطلاق می‌شود که تنها با تابش خورشید و دمای آن محیط تعیین می‌شود. آگاهی از میزان پتانسیل تولید به هدایت تحقیقات کشاورزی به منظور شناسایی عوامل محدودکننده رشد و متعاقباً کاهش شکاف عملکرد و در نهایت به تضمین امنیت غذایی کمک می‌کند. این مطالعه در سال 1399 به منظور برآورد عملکرد بالقوۀ ارقام پُرمحصول گندم (پیشگام) و جو (بهمن) زمستانه با استفاده از مدل رشد تابشی-گرمایی فائو و داده‌های دراز مدت تشعشع و دمای شهرستان ابهر (واقع در استان زنجان) انجام گردید. علاوه‌بر آن، نیاز آبی این گیاهان با استفاده از مدل کراپ‌وات فائو و داده‌های اقلیمی شامل رطوبت نسبی هوا، سرعت باد، ساعت‌‌های آفتابی، تشعشع، دمای کمینه و بیشینه هوا مطالعه شد. بر اساس یافته‌های تحقیق حاضر، مقدار باران مؤثر، نیاز آبی و آبیاری نیز در طول چرخۀ رشد برای محصول گندم به ترتیب 4/93، 5/694 و 1/601 میلی‌متر و برای محصول جو به ترتیب 4/93، 3/615 و 7/522 میلی‌متر تخمین زده شد. پتانسیل عملکرد دانه در ارقام پُرمحصول گندم و جو شش ردیفه زمستانه با احتساب شاخص برداشت 45 درصد و رطوبت دانۀ 11 درصد، به ترتیب 48/8 و 94/7 تُن در هکتار برآورد گردید. در گندم آبی، بر اساس متوسط عملکرد واقعی (5/4 تُن در هکتار) در این منطقه، خلأ عملکرد 4 تُن در هکتار (1/47 درصد) می‌باشد. در جو آبی، با توجه به عملکرد واقعی (85/3 تُن در هکتار)، مقدار خلأ عملکرد به 1/4 تُن در هکتار (9/50 درصد) می‌رسد. این اختلاف قابل‌توجه بین عملکرد واقعی و عملکرد پتانسیل، ضرورت انجام تحقیقات به‌زراعی و به‌نژادی برای شناخت و رفع موانع رشد و در نهایت تقلیل خلأ عمکرد محصول را بیش از پیش نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of irrigated winter wheat and barley production potential by FAO method

نویسندگان [English]

  • Farhad Bayat 1
  • Fereydoun Sarmadian 2
  • Mohammad Reza Jahansuz 3
  • Marhaba Sahbani 4
1 Graduated Ph.D. of Crop Ecology, Department of Agriculture and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
2 Professor, Department of Soil Science & Engineering, University of Tehran, Karaj, Iran
3 Professor, Department of Agronomy & Plant Breeding, University of Tehran, Karaj, Iran
4 Graduated M.Sc. of Soil Resource Management, Department of Soil Science & Engineering, University of Tehran, Karaj, Iran
چکیده [English]

Introduction

Production potential refers to the yield of a particular cultivar of a crop in a given environment with sufficient growth sources and free of pests and diseases, which is determined only by solar radiation and the temperature of that environment. Understanding potential production helps direct agricultural research to identify growth-limiting factors and, consequently, promote policy-making and reduce the yield gap (Hackman et al., 2013).

Today, several models based on the rate of evaporation of transpiration, radiation and heat are used by researchers to estimate the potential for dry matter production in plants. Among these, we can mention the model of FAO (thermal radiation), Wachningen, Albero, Dust, Episim, Wafest and Aquacrop (Salo et al., 2016). In Iran, from the FAO model to evaluate the potential of cotton production in Qom province (Seyed Jalali, 2004), alfalfa in Qazvin province (Taati et al., 2015), sugar beet in Lorestan and Silakhor plain (Sohrabi and Chegini, 2011), corn It has been used in Shahrekord (Etedali et al., 2012). For Hashtgerd region (Noshabadi et al., 2016) and Dasht-e Moghan (Izadfard et al., 2017), the yield potential of wheat and barley based on radiation and heat of the region has been studied by FAO model.

Therefore, the present study aimed to determine the potential yield of winter wheat and barley based on radiation and heat of the study area (Abhar) through plant characteristics of high-yielding cultivars of two major wheat and barley plants under optimal growth conditions.

Materials and Methods

The study area was 30247 hectares in Abhar city (located in Zanjan province), which is located between the eastern longitude 49̊ 10́ to 49̊ 25́ and between the northern latitude 36̊ and 36̊ 15́. Approximately 3662 hectares of land are not cultivable due to high roughness, steep slopes and industrial structures. According to the climatic information of Khorramdareh synoptic station, the closest station to the study site, this region has a Mediterranean climate with cold and humid winters versus mild and dry summers. The average minimum and maximum annual temperatures are 0.1 and 12.7 degrees Celsius, respectively (average annual temperature is 12.7 degrees Celsius). Total precipitation, effective precipitation (relationship 4 and 5) and potential transpiration evaporation per year were 334, 102.8 and 1329.95 mm, respectively.

Estimation of crop water requirement, using cropwat software version 8, the crop water requirement in the growth cycle was calculated. In cropwat software, the plant coefficient is calculated daily. Planting date According to the information of local farmers, the harvest date of summer crops and also the date of occurrence of early autumn frosts were selected, based on which, the first half of October 15 was the best time to plant wheat and winter barley. In addition, the length of each of the four stages of growth (initial, plant development, intermediate and final) based on the climate of the region (semi-arid) along with their related plant coefficients was extracted from FAO Journal No. 56 Irrigation and Drainage (Allen et al., 1998). Finally, plant coefficients from the beginning to the end of the growth cycle were estimated through linear interpolation in Krapowat software (Alizadeh, 2011).

In the present study, the production potential of high-yielding winter wheat and barley cultivars were estimated using the FAO model and long-term radiation and temperature data of Abhar region. In addition, the water requirement of these crops was assessed using the FAO Cropwat model and climatic data including relative air humidity, wind speed, sun hours, solar radiation, minimum and maximum air temperatures.

Results and Discussion

Effective rainfall during the growth cycle, water requirement and irrigation of wheat crop with average plant coefficient of 0.79 were estimated to be 93.4, 694.5 and 601.1 mm, respectively. The effective rainfall during the growth cycle, water requirement and irrigation of barley with an average plant coefficient of 0.79 were calculated as 93.4, 615.3 and 522.7 mm, respectively. Biomass dry matter and grain in wheat with 45% harvest index were calculated 16.98 and 7.64 tons per hectare, respectively, which with the calculation of 11% grain moisture, the economic yield potential reaches 8.48 tons per hectare. Biomass dry matter and grain in six-row barley with 45% harvest index were estimated at 15.88 and 7.15 tons per hectare, respectively, which with the calculation of 11% grain moisture, the economic yield potential reached 7.94 tons per hectare.

Conclusion

Yield is a quantitative trait that results from the interaction of a large number of genes and environmental conditions. Therefore, the farmer strives to provide optimal growth conditions as far as possible through agriculture to increase plant production capacity. According to climatic variables (radiation and temperature) and crop characteristics of high-yielding cultivars, it seems that the FAO growth model has a reasonable estimate of production potential.

کلیدواژه‌ها [English]

  • plant growth model
  • radiation-heat model
  • growth simulation
  • potential yield
  • high-yielding cultivars
  1. Akar, T., Avci, M., & Dusunceli, F. (2004). Barley: Post harvest operations. Food and Agriculture Organization (FAO) of the United Nations, The Central Research Institute for Field Crops, Ankara, Turkey, 64.
  2. Alasti, O., Zeinali, E., Soltani, A., & Torabi, B. (2022). Exploring the current status of barley yield and production gap of Iran. European Journal of Agronomy, 139, 126547.
  3. Alizadeh, A. (1390). Soil, Water and Plant Relationship, 12th edition, Imam Reza University Press, Mashhad, Iran, 356 p.
  4. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.
  5. Ashraf, S., Ashraf, V. & Abbaspour, H. (2011). Assessment of land production potential for barley using geographic information system (GIS) method. Indian Journal of Science and Technology, 4(12), 1775-1777.
  6. Ayubi, S., & Jalalian, A. (2015). Land Evaluation (Agriculture and Natural Resources), fifth edition. Isfahan University of Technology, 386 p.
  7. Bruinsma, J. (2009). The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050?. In How to feed the World in 2050. Proceedings of a technical meeting of experts, Rome, Italy, 24-26 June 2009 (pp. 1-33). Food and Agriculture Organization of the United Nations (FAO).
  8. Cassman, K. G., Grassini, P., & van Wart, J. (2010). Crop yield potential, yield trends, and global food security in a changing climate. Handbook of climate change and agroecosystems. Imperial College Press, London, 37-51.
  9. Chegeni, H. (2014). Effect of plant density on yield and yield components of wheat cultivars. Applied Field Crops Research, 27(104), 9-21.
  10. Evans, L. T., & Fischer, R. A. (1999). Yield potential: its definition, measurement, and significance. Crop science, 39(6), 1544-1551.
  11. Foladmand, H. (2014). Estimation of Mean and Critical Irrigation Requirements for the Important Agricultural Crops of Fars Province. Water and Soil Science, 20(2), 187-196.
  12. Food and Agriculture Organization of the United Nations (FAO). (2009). How to Feed the World in 2050: High-Level Expert Forum.
  13. Gharineh, M., Bakhshandeh, A., Andarzian, B., & Fayezizadeh, N. (2012). Agro-climatic zonation of Khouzestan province based on potential yield of irrigated wheat using WOFOST model. Journal of Agroecology, 4(3), 255-264.
  14. Givi, J., & Nouri, M. (2012). Comparison Between Land Production Potential Prediction for Maize, Using FAO and Wageningen Models and Assessment of Management Level for Its Cultivation Around Shahrekord City. Water and Soil, 26(4), 873-885.
  15. Heino, M. (2014). Quantitative traits. In Stock Identification Methods. Academic Press, 59-76 pp.
  16. Heng, L. K., Hsiao, T., Evett, S., Howell, T., & Steduto, P. (2009). Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal, 101(3), 488-498.
  17. Hochman, Z., Gobbett, D., Holzworth, D., McClelland, T., van Rees, H., Marinoni, O., ... & Horan, H. (2013). Reprint of “Quantifying yield gaps in rainfed cropping systems: A case study of wheat in Australia”. Field Crops Research, 143, 65-75.
  18. Hurry, V. M., & Huner, N. P. (1991). Low growth temperature effects a differential inhibition of photosynthesis in spring and winter wheat. Plant Physiology, 96(2), 491-497.
  19. Izadfard, A., Sarmadian, F., Jahansooz, M., Peikani, G., & Chaichi, M. (2017). Comparison between AquaCrop and radiation-thermal production potential models for potential yield estimation in part of Moghan plain, Ardabil Province, Iran. Iranian Journal of Soil and Water Research, 48(4), 853-864.
  20. Kropff, M. J., Cassman, K. G., Peng, S., Matthews, R. B., & Setter, T. L. (1994). Quantitative understanding of yield potential. Breaking the Yield Barrier, 21-38.
  21. Mamnouie, E., Fotouhi Ghazvini, R., Esfahany, M. & Nakhoda, B. (2006). The Effects of Water Deficit on Crop Yield and the Physiological Characteristics of Barley (Hordeum vulgare L.) Varieties. J. Agric. Sci. Technol., 8, 211-219.
  22. Masoudi, H. & Hatami, A. (1390). The process of using wheat straw and stubble in livestock feeding. The 5th National Conference on Agricultural Residues (Tarbiat Modares University, Tehran), 953-960.
  23. Mitchell, P. L., & Sheehy, J. E. (2018). Potential yield of wheat in the United Kingdom: How to reach 20 t ha− 1. Field crops research, 224, 115-125.
  24. Nassiri Mahalati M., & Koocheki A. (2009). Agroecological zoning of wheat in Khorasan provinces: Estimating yield potential and yield gap. Iranian Journal of Field Crops Research, 7(2), 695-709.
  25. Olsen, J., Kristensen, L., & Weiner, J. (2006). Influence of sowing density and spatial pattern of spring wheat (Triticum aestivum) on the suppression of different weed species. Weed Biol. Manag. 6, 165-173.
  26. Peltonen-Sainio, P. Muurinen, S. Rajala, A. & Jauhiainen, L. (2008). Variation in harvest index of modern spring barley, oat and wheat cultivars adapted to northern growing conditions. Journal of Agricultural Science, 146, 35–47.
  27. Petr, J., Cerny, V., & Hruska, L. (1988). Yield formation in the main field crops. Developments in Crop Science (Netherlands), 13, 336 pp.
  28. Salo, T. J., Palosuo, T., Kersebaum, K. C., Nendel, C., Angulo, C., Ewert, F., ... & Ferrise, R. (2016). Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. The Journal of Agricultural Science, 154(7), 1218-1240.
  29. Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature ecology & evolution, 3(3), 430.
  30. Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238-1240.
  31. Seyed jalali, S., Sarmadian, F., & Shorafa, M. (2014). Modeling of Land Production Potential for Irrigated Winter Wheat in Aghili Plain, Khuzestan Province. Iranian Journal of Soil Research, 27(4), 427-439. 
  32. Seyedjalali, S. A. (2004). Modelling of land production potential for irrigated cotton in Qom Masileh, Qom province. The fourth international Iran & Russia conference, 18(1), 642-647.
  33. Sohrabi, A., & Chegini, M. (2012). Evaluation of land suitability and radiation-thermal production potential of sugar beet by FAO method in the fields of Department of Agriculture of Lorestan, Iran and its comparison with Silakhoor Plain. Journal of Sugar Beet, 27(2), 196-185.
  34. Sys, C., Van Ranst, E. & Debaveye, J. (1991). Land evaluation. Part I, principles in land evaluation and crop production calculation. International Training Center for Post Graduate Soil Scientists, Ghent University, Ghent. Pp.274.
  35. Sys, C., Van Ranst, E., Debaveye, J., & Beernaert, F. (1993). Land Evaluation part III, Crop Requirements. Agricultural publication, 7. 197p.
  36. Taati, A., Sarmadian, F., Mousavi, A., & Rahmani, A. (2015). Agro-ecological zoning for cultivation of Alfalfa (Medicago sativa L.) using RS and GIS. Scientia Agriculturae, 9, 93-100.
  37. Tian, X., Engel, B. A., Qian, H., Hua, E., Sun, S., & Wang, Y. (2021). Will reaching the maximum achievable yield potential meet future global food demand?. Journal of Cleaner Production, 294, 126285.
  38. Tsialtas, J. T., & Maslaris, N. (2008). Evaluation of a leaf area prediction model proposed for sunflower. Photosynthetica, 46(2), 294-297.
  39. Unkovich, M., Baldock, J., & Forbes, M. (2010). Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Advances in Agronomy, 105, 173-219.
  40. Van Ittersum, M. K., & Rabbinge, R. (1997). Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field crops research, 52(3), 197-208.
  41. Van Wart, J., Kersebaum, K. C., Peng, S., Milner, M., & Cassman, K. G. (2013). Estimating crop yield potential at regional to national scales. Field Crops Research, 143, 34-43.
  42. Yadollahi Nooshabadi, S. J., Jahansuz, M. R., Majnoun Hosseini, N., & Peykani, G. R. (2017). Evaluation of Hashtgerd area land for major crops production ability by FAO method. Iranian Journal of Field Crop Science, 48(1), 25-38.
  43. Zahed, M., soltani, A., Zeinali, E., Torabi, B., Zand, E., Alimagham, S. (2019). Modeling of irrigated wheat yield potential and gap in Iran. Journal of Crop Production, 12(3), 35-52.
  44. Ziloee, N., Ahmadi, A., Joudi, M., Bagheri Dehabadi, M., & Mohammad Morad Taram, H. (2013). Study of Phenological Traits and Their Relation with Yield Potential in Wheat. Iranian Journal of Field Crop Science, 44(4), 549-562.