مقایسه روش‌های پس پردازش برونداد مدل WRF برای دمای روزانه در ایستگاه مهرآباد تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه فیزیک فضا موسسه زئوفیزیک -دانشگاه تهران- تهران- ایران

2 دانشجو دکتری نقشه برداری - دانشکده فنی -دانشگاه تهران

3 دانشجو دکتری هواشناسی - موسسه ژئوفیزیک -دانشگاه تهرا

چکیده

پیش بینی دمای هوا و شرایط جوی با توجه به تاثیر آن بر روی زندگی روز مره انسان همیشه بسیار مهم بوده و یکی از مباحث چالش برانگیز می باشد.در این راستا استفاده از مدل های پیش بینی عددی وضع هوا برای پیش‌بینی دمای سطح زمین توجه زیادی را به خود جلب کرده است. معمولا این مدل‌ها دارای خطاهای سامان مند است که عمده آن به خاطر پایین بودن میزان تفکیک توپوگرافی و نیز نقص در پارامترسازی فرایندهای فیزیکی متفاوت در مدل است. امروزه روش‌های مختلفی وجود دارد که با ترکیب پیش‌بینی‌های مدل و مشاهدات، خطاهای مدل را تا حد بسیار خوبی کاهش می‌دهد .در این تحقیق ، سه روش تبدیل فوریه، شبکه عصبی و پالایه کالمن به منظور پس پردازش دمای روزانه سطح زمین برای ایستگاه تهران و مدل WRF به مدت 4 ماه طراحی شده است. بررسی‌های آماری نشان می‌دهد که خطای مدل با توجه به فصل در ایستگاه متفاوت است و پیش‌بینی مدل در همه روزها به صورت کم برآورد یا بیش برآورد می باشد به این معنا که در همه روزها خطا مثبت یا در همه روزها منفی است؛ درحالی‌که پس از اعمال پالایه کالمن، این برآورد برای بعضی روزها مثبت و بعضی روزها منفی می‌شود، این مطلب در کاهش قابل‌ملاحظه خطای میانگین که اریبی را اندازه‌گیری می‌کند، مشهود است . جذر میانگین مربع خطاها، پاشندگی خطا را اندازه‌گیری می‌کند و هرچند کاهش آن پس از اعمال پالایه قابل‌توجه است ولی با صفر فاصله دارد و بیانگر وجود برآورد اضافی و نقصانی است . در میان روش‌ها، پالایه کالمن توانست پیش‌بینی مدل را تا حد قابل قبولی اصلاح کند و مقدار خطا را تا حد فراوانی به اندازه 90% کاهش دهد.

واژه‌های کلیدی: پس پردازش، دمای روزانه، مدل WRF، شبکه عصبی، تبدیل فوریه،پالایه کالمن

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of WRF Model Post-Processing Methods for Daily Temperature at Mehrabad Station in Tehran

نویسندگان [English]

  • Farahnaz Taghavi 1
  • Mona Kosary 2
  • Mojtaba Jalali 3
1 Associate Prof., Space Physics Department Institute of Geophysics University of Tehran Tehran-Iran
2 Ph.D. Student -University of Tehran
3 Ph.D. Student -Institute of Geophysics, University of Tehran
چکیده [English]

Comparison of WRF Model Post-Processing Methods for Daily Temperature at Mehrabad Station in Tehran

Introduction

In last years, different methods for a post-processing the model outputs have been developed which provide a practical tool that combines the observed data and predictions of the model using an algorithm to reduce the systematic errors of the direct model outputs without the need for long historical data archives. It is well known that numerical weather prediction (NWP) models usually exhibit systematic errors in the forecasts of certain meteorological parameters especially near the surface (Galanis et al. , 2006). Direct numerical weather prediction model forecasts of near surface parameters often suffer from systematic errors mainly due to the low resolution of the model topography and inaccuracies in the physical parameterize schemes incorporated in the model. In recent years, the increasing demand for accurate weather forecasts has led to a steady improvement of the skill of numerical weather predictions at both global and regional scales. Despite these improvements, such predictions are still affected by imperfect initial conditions, numerical approximations, and simplification of the physical and chemical processes that govern the evolution of the atmosphere. These imperfections, approximations, and simplifications result in random and systematic errors (e.g., bias) that affect the predictions’ accuracy. Bias here is defined as the ‘‘difference of the central location of the forecasts and the observations” (Monache et al., 2011). In order to reduce the influence of the above mentioned drawbacks in the final output of a NWP model, a variety of approaches based on statistical methods has been used. Most of them are derived from Model Output Statistics (MOS), which are able to account for local effects and seasonal changes.

One of the most successful approaches to this problem is the use of Kalman filters (Kalman, 1960; Kalman and Bucy, 1961; Galanis and Anadranistakis, 2002). They consist of a set of mathematical equations that provides an efficient computational solution of the least square method. This paper is organized as follows. In Section 2, we introduce different post-processing method. In Section 3, we show that how the filters are applied on the model outputs for average temperature at Mehrabad meteorological station. In Section 4, statistical results are presented and finally the paper is concluded in section 6.



Materials and methods



In this paper three simple algorithms based on Fourier transform, artificial neural network and Kalman filter have been implemented to correct the average temperature Weather Research and Forecasting (WRF) model forecasts in Tehran Mehrabad station. The WRF forecasting model is a mesoscale atmospheric research as well as environmental forecasts. The first post-processing approach implemented in this study is Fourier transform (FT) which decomposes a function of time (a signal) into its constituent frequencies. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of time. The Fourier transform of a function of time is itself a complex-valued function of frequency, whose magnitude (modulus) represents the amount of that frequency present in the original function, and whose argument is the phase offset of the basic sinusoid in that frequency(Bracewell, 1986).

Second approach is performed in this study is Artificial Neural Network (ANN) techniques to correct daily average temperature (Hansen and Salamon, 1990) .Generally speaking, data driven processes are governed by systems of linear or non-linear equations, which describe the relationship between the WRF model and observation values of the system's output and the values of inputs. Last approach in this method referred to Kalman Filter. Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, containing statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is named after Rudolf E. Kálmán, one of the primary developers of its theory. In practice, the Kalman filter is the statistically optimal sequential estimation procedure for dynamic systems. Any type of Kalman methods aims at eliminating the standard error and, thus, at vanishing the corresponding biases. The fulfillment of this requirement is the main criterion ensuring the credibility of the filter.



Results and discussion

In this study, the performances of three post processing methods are tested with the WRF model runs .Statistical results show that the model error varies according to the season at the station and the model forecast is underestimated or overestimated on all days, meaning that the error is positive on all days or negative on all days; While this estimate becomes positive for some days and negative for others after the application of the Kalman refinement, this is evident in the significant reduction in the mean error that measures the bias. From the root mean square of the errors, it measures the scatter of the error, and although its reduction is noticeable after the application of the filter, but it is far from zero and indicates the existence of additional and deficient estimates.

Conclusion

In this paper three simple algorithms based on Fourier transform, artificial neural network and Kalman filter have been implemented to correct the average temperature model forecasts.

Results show that all of different methods of predicting average temperature are presented, reduce numerical weather prediction’s systematic and random errors. One of the most successful approaches to this problem is use of Kalman filter. Among the methods, the Kalman refiner was able to modify the WRF model prediction to an acceptable level and greatly reduce the error rate by as much as 90%. The main advantage of this statistical methodology is the easy adaptation to any alteration of the observations as well as the fact that it may utilize short series of back- ground information.



Key words: Kalman filtering, Post processing, temperature, Artificial Neural Network

کلیدواژه‌ها [English]

  • Post processing
  • WRF Model
  • Daily temperature
  • Artificial Neural Network
  • Kalman filter
  1. 1.

    1. Azadi ,M., Vashani ,S., Hajjam ,S.,2012,Probabilistic precipitation forecast using post processing of output of ensemble forecasting system, Volume 38, Issue 3 - Pages 203-216, 22059/JESPHYS.2012.29126
    2. Azadi ,M., Arabli,P.,1388,Comparison of official forecasts and WRF model forecasts for maximum and minimum daily temperatures in the synoptic stations of their centers, 8th Numerical Weather Prediction Conference, Tehran, Iran.
    3. Bracewell, R. N., (1986). The Fourier transform and its applications (Vol. 31999). New York: McGraw-Hill.
    4. Bechtold, M., De Lannoy, G.J., Koster, R.D., Reichle, R.R., Mahanama, S.P. and Roose, D., 2019. Peatland Hydrology in a Global Land Surface Modeling and Data Assimilation Framework. In Geophysical Research Abstracts (Vol. 21).
    5. Benali, A., Carvalho, A.C., Nunes, J.P., Carvalhais, N. and Santos, A., 2012. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124, pp.108-121.
    6. Bevington, P. R. (1969). Data Reduction and Error Analysis for the Physical Sciences. McGrow-Hill Book Co. New York PP. 164-176
    7. Brown, R. G., and Hwang, P. Y., 1992, Introduction to random signals and applied Kalman filtering, second edition, John Wiley
    8. Diaz, H.F. and Bradley, R.S., 1997, Temperature variations during the last century at high elevation sites. In Climatic change at high elevation sites (pp. 21-47). Springer, Dordrecht.
    9. Galanis, G., and Anadranistakis, M., 2002, A one-dimensional Kalman filter for the correction of near surface temperature forecasts, Meteoral. Appl. 9, pp.473-441.
    10. Galanis, G., Louka, P., Katsafados, P., Kallos, G., Pytharoulis, I., (2006): Applications of Kalman filter based on non-linear functions to numerical weather predictions. Ann. Geophys.24, 2451-2460.
    11. Glahn, H. R., and Lowry, D. A.,1972. The use of Model Output Statistics (MOS) in objective weather forecast. J. Appl. Meteorol., 11, 1203-1211.
    12. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B., 2013, Bayesian data analysis. Chapman and Hall/CRC.
    13. Hagan, M. T. and Menhaj, M. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993.
    14. Hansen, L.K. and Salamon, P., 1990, Neural network ensembles. IEEE Transactions on Pattern Analysis & Machine Intelligence, (10), pp.993-1001
    15. Homleid, M., 1995, Diurnal corrections of short- term surface temperature forecasts using the kalman filter, Weather Forecast., 10, 689-707.
    16. Kalman, R. E., 1960, A new approach to linear filtering and prediction problems, Trans. ASME, Ser. D, J. Basic Eng., 82, 34-45.
      Kalman, R. E., and Bucy, R. S., 1961, new results in linear filtering and prediction
      problems, Trans. ASME, Ser. D., 83, 95-108.
    17. Klein, William H., Billy M. Lewis, and Isadore Enger, (1959). "Objective prediction of five-day mean temperatures during winter." Journal of Meteorology 16.6, 672-682.
    18. Johnston, J.,1960, Econometric Methods. McGraw Hill Book Co . New York PP,134-135.
    19. Marzban, C., 2003, Neural network for post processing model output, ARPS, Mon. Wea. Rev., 131, 1103-1111.
    20. Mao, Q., McNider R.T., Mueller S. F., and Jaung, H. H., (1999), An optimal model output calibration algorithm suitable for objective temperature forecasting, Weather Forecast., 14, 190-202.
    21. Mccollor, D. and Stull, R., 2008, Hydro meteorological accuracy enhancement via post processing of  numerical weather forecasts in complex  terrain, Wea.forecasting, 23, 131-144.
    22. Norris, P.M. and Da Silva, A.M., 2007. Assimilation of satellite cloud data into the GMAO finite-volume data assimilation system using a parameter estimation method. Part I: Motivation and algorithm description. Journal of the Atmospheric Sciences, 64(11), pp.3880-3895.
    23. Prechelt, L. (1998). Automatic early stopping using cross validation: quantifying the criteria. Neural Networks, 11, 761–767.
    24. Rayner, N.A.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C. and
    25. Simmons, A.J., Jones, P.D., da Costa Bechtold, V., Beljaars, A.C.M., Kållberg, P.W., Saarinen, S., Uppala, S.M., Viterbo, P. and Wedi, N., 2004, Comparison of trends and low‐frequency variability in CRU, ERA‐40, and NCEP/NCAR analyses of surface air temperature. Journal of Geophysical Research: Atmospheres, 109(D24).

     

    1. Welch, G. and Bishop, G., 1995, an introduction to the Kalman filter. University of North Carolina at Chapel Hill Department of Computer Science Chapel Hill, NC 27599-3175.