تغییرات سطح پوشش برف حوضه آبخیز کوهرنگ طی سال های 2010-2018

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه جغرافیا، دانشگاه یزد، ایران

2 دانشیار گروه جغرافیا، دانشگاه یزد، ایران

چکیده

حوضه آبخیز کوهرنگ از مهم‌ترین حوضه‌های برفی کشور محسوب می‌شود و در تأمین آب شرب مناطق وسیعی از کشور نقش بسزایی دارد. هدف از پژوهش حاضر پایش سطح پوشش برف حوضه آبخیز کوهرنگ در بازه زمانی 2018-2010 می‌باشد. بدین منظور از تصاویر سنجنده مودیس استفاده شد و با استخراج شاخص NDSI، پوشش برف کل حوضه به تفکیک مناطق ارتفاعی محاسبه و مورد ارزیابی قرار گرفت. نتایج پژوهش نشان می دهد، میانگین پوشش برف منطقه در طول این دوره 440 کیلومترمربع (34 درصد) است. سال‌های 2010 و 2014 به ترتیب کمترین و بیشترین سطح پوشش برف را داشتند. بالاترین میزان پوشش برف در بین ماه‌های سال متعلق به ماه ژانویه(دی) با میانگین 3/1132 کیلومترمربع ( 6/88 درصد) می باشد و به طور کلی تغییرات سطح پوشش برف منطقه در طول دوره مطالعاتی کاهشی است که در ماه فوریه (بهمن) بیشترین کاهش مشاهده شد. همچنین بررسی ارتباط بین عامل ارتفاع و سطح پوشش برف نشان دهنده همبستگی مثبت بالای(98/0) این دو متغیر نسبت به یکدیگر است. به طوری که بیشترین درصد پوشش برف مربوط به مناطق ارتفاعی بالاتر بوده است. میانگین درصد پوشش برف در طبقات ارتفاعی یک تا شش به ترتیب برابر با 10، 22، 32، 40، 48و 58 درصد می باشد. در انتها از نتایج این پژوهش می‌تواند در راستای برنامه‌ریزی‌های دقیق و مدیریت بهینه منابع آب استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Snow cover changes in Koohrang watershed during the years 2010-2018

نویسندگان [English]

  • shahrbanoo monjazeb marvdashti 1
  • Ahmad Mazidi 2
1 Department of Geography, Faculty of Humanities, Yazd University, Iran
2 Department of Geography, Faculty of Humanities, Yazd University, Iran
چکیده [English]

Introduction

Snow is a form of precipitation in hydrological cycle of mountain regions that plays an important role to supply drinking and agricultural water as the delay water resource during low-water seasons. Snow distribution is important to hydrological research of watersheds. The temporal and spatial distribution of snow cover has significant influence on snowmelt runoff. Knowing the extent of the snow is valuable information that provides insight as to the amount of water to be expected from snowmelt available for runoff and water supply. In this study there has been an attempt to investigate changes in snow cover of Koohrang watershed. However, the elevation effect on snow cover is also proposed. Koohrang’s catchment is one of sub-basins of northern Karoon with an area estimated over than 2700 km2 which is located in Chaharmahal-va- bakhtiyari Province of Iran. The permanent stream of the rivers; ultra-cold climate and high elevation are good and justifying evidences for solid precipitation in this area. Therefore, awareness of the amount of snow resources in this area is necessary in the storage of the equivalent amount of water, controlling seasonal floodwaters, anticipation of the river’s stream in supplying the required water of downstream land. This study aims to monitor the change of snow cover of the Koohrang watershed during 2010 to 2018 and to determine the association between snow cover and elevation zones.

Material and method

Two groups of data including remote sensing and Geographic Information System (GSI) have been used in this study, And with respect to the subject, different techniques have been utilized. Moderate Resolution Imaging Spectroradiometer (MODIS) Satellite imagery within the statistical period of 2010-2018 was obtained. Then by calling those images into ENVI software, snow covered areas were differentiated from other areas, using difference index and NDSI ratios band 4 and 6; and also their maps were provided. In order to examine the amount of snow border of basin, with the use of the principle of environmental degradation and regression relationship and linear functions and the map, the daily 0°C (snow border) isothermal lines were defined. Furthermore, we investigate trends and variability of snow cover changes in the Koohrang watershed at different temporal scales (monthly and annual) and at different elevation zones between 1656 to 4074 m.

Results

The results show a decreasing trend of changes in snow cover in the region during the study period. The most decreasing trend among the months was related to February. October and March are on the second and third places. The average snow cover of the region during this period is 440 km2 (equal to 34%). 2010 and 2014 years showed the lowest and highest snow cover, respectively. The highest snow cover among the months of the year belongs to January with an average of 1132.3 km2 (equal to 88.6%). The results also indicate that there is a direct relationship between the elevation and the quantity of snow cover and its persistence. So the highest percentage of snow cover was related to higher elevation zones. The average percentage of snow cover in elevation zones of 1 to 6 were 10, 22, 32, 40, 48 and 58%, respectively.

Conclusion

The results of this study can be very useful and practical for planning water resources in the region, especially in the warm seasons. The trend analysis on the alternation of snow cover during the 9 years period from 2010 to 2018 has shown some important results. If the decreasing trend of the snow cover in February and March as observed in this study continue, this may result in significant changes in the river flows and water resources in the region, particularly in spring. This would have implications for aquatic ecosystems that depend on the seasonal melt water pulse, for irrigation dependent agriculture and, last but not least, for water resources in the densely populated downstream areas. Some of the trends observed in the snow cover changes can be explained by the high correlations observed between the snow cover and the observed temperature. It should be noted here that not only snow covered areas but also the snow depth and snow water equivalent will impact the snow melting, which subsequently influence the river flow regimes and water resources availability. Therefore, future studies should attempt to consider these factors for a more comprehensive assessment of the impact of Koohrang snow on the river flow regimes.

کلیدواژه‌ها [English]

  • Keywords: Koohrang watershed
  • MODIS satellite sensor
  • NDSI index
  • snow cover
  • ENVI software
  1. Azizi, G., Rahimi, M., Mohammadi, H., & Khoshakhlagh, F. (2017). Spatio-temporal variations of snow cover in the southern slope of central Alborz. Physical Geography Research, 49(3), 381-393.
  2. Bahrami Pichachchi, H., Raeini, S., & Norouzolashdi, R. (1398), Investigation of changes in snow cover in the north of Central Alborz using MODIS sensor, the third national conference on coastal water resources management, Sari
  3. Berezowski, T., Chormański, J., & Batelaan, O. (2015). Skill of remote sensing snow for distributed runoff prediction. Journal of Hydrology, 524, 718-732.
  4. Dozier, J. (1989). Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of Environment, 28(1), 9-22.
  5. Ebrahimi, H., Gheibi, A., & Malakouti, H. (2012). Trend of snow cover changes in snowy areas of Iran using Madis sensor data. Nivar, 36 (78), 3-10.
  6. Entezami, H., Alavipanah, S. K., Darvishi Boloorani, A., Matinfar, H. R., & Chap, K. (2017). Comparison of NDSI and LSU Methods in Estimation of Snow Cover by MODIS (Case Study: Saghez Watershed Basin). Physical Geography Research Quarterly, 49(2), 207-219.
  7. Evans, J., & Kruse, F. (2013). Snow Depth Retrieval Using Ku-Band Interferometric Synthetic Aperture Radar (Insar). Paper presented at the 36th Conference on Radar Meteorology, USA.
  8. Falahati, F., Alijani, B., & Saliqeh, M. (2018). Investigating the effect of climate change on snow cover with the approach of water resources management in the coming decades (Case study: Basin of watershed leading to Amir Kabir dam. Scientific Journal of Rescue and Relief, 9(3), 68-79.
  9. Fattahi, E., Noohi, K., & Delavar, M. (2009). Investigation of snow cover surface of southwestern basins of Iran in relation to climate signals. Quarterly Journal of Geographic Research, 24(95), 109-1.
  10. Ghanbarpour, M. R., Mohseni, S. M., & Ahmadi, H. (2005). An evaluation of regions effective in accumulation and persistence of snow cover and snowmelt contribution in runoff. Iranian Journal of Natural Resources, 58(3), 505-513.
  11. Hall, D., Riggs, G., Salomonson, V.V., DiGirolamo, N.E., & Bayr, K. (2002). MODIS snow-cover products. Remote Sensing of Environment, 83(2), 181-194.
  12. Hall, D. K., Riggs, G. A., & Salomonson, V. V. (1995). Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54(2), 127-140.
  13. Hall, D. K., Riggs, G. A., Salomonson, N. E., & Bayr, K. J. (2002). MODIS snow-cover products. Remote Sensing of Environment, 83(1-2), 181-194.
  14. Hasanpour Darvishi, H., & Ebrahimi, H. (2014). Effect of snow effect on runoff simulation in catchment area (Case study: Neyshabour catchment basin). Irrigation and Drainage Journal of Iran, 8(4), 864-857.
  15. Li, C., Su, F., Yang, D., Tong, K., Meng, F., & Kan, B. (2018). Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014. International Journal of Climatology, 38(2), 708-728.
  16. Lindsay, C., Zhu, J., Miller, A. E., & Wilson, T. L. (2015). Deriving snow cover metrics for Alaska from MODIS. Remote Sensing, 7(10), 12961-12985.
  17. Lldoromi, A., Habibnejad Roshan, M., Safari Sha , M., & Oghli Ali, D. (2015). Application of MODIS Sensor and NDSI Index to Produce Snow Cover Map (Case Study of Bahar Watershed, Iran). Geographical Space, 15(50), 125-140.
  18. Malcher, P., Floricioiu, D., & Rott, H. (2003). Snow mapping in Alpine areas using medium resolution spectrometric sensors. Paper presented at the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. 03CH3747).
  19. Matkan, A. (2003). Snow depth estimation in Iran, using: Dmsp Fii-Ssm/I Satellite data. Geography, 2(1), 8-27.
  20. Maurer, E. P., Rhoads, J. D., & Lettenmaier, D. P. (2003). Evaluation of snow‐covered area data product from MODIS. Hydrological Processes, 17(1), 59-71.
  21. Mirmousavi , S.H., & Saboor, L. (2014).Monitoring the Changes of Snow Cover by Using MODIS Sensing Images at North West of Iran. Geography and Development Iranian Journal, 12(35), 181-200.
  22. Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, , & Senan, R. (2019). Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations. The Cryosphere, 13(8), 2221-2239.
  23. Parajka, J., & Blöschl, G. (2006). Validation of MODIS snow cover images over Austria. Hydrology and Earth System Sciences, 10(1), 679-689.
  24. Ramsay, B. H. (1998). The interactive multisensor snow and ice mapping system. Hydrological Processes, 12(10‐11), 1537-1546.
  25. Rees, W. G. (2005). Remote sensing of snow and ice: CRC press.
  26. Romanov, P., Tarpley, D., Gutman, G., & Carroll, T. (2003). Mapping and monitoring of the snow cover fraction over North America. Journal of Geophysical Research: Atmospheres, 108(D16).
  27. Saavedra, F. A., Kampf, S. K., & Sibold, J. S. (2018). Changes in Andes snow cover from MODIS data, 2000–2016. The Cryosphere, 12(3), 1027-1046.
  28. Seidel, K., Brusch, W., & Steinmeier, C. (1994). Experiences from real time runoff forecasts by snow cover remote sensing. Paper presented at the Proceedings of IGARSS'94-1994 IEEE International Geoscience and Remote Sensing Symposium.
  29. Seifi, H., & Gorbani, I. (2019). Estimating snow cover trends using Object-Oriented Methods and images received from OLI and TIRS sensors (Case Study: Sahand Mountain). Scientific - Research Quarterly of Geographical Data (SEPEHR), 28(109), 77-91.
  30. Singh, P., & Jain, S. (2003). Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yields. Hydrological sciences journal, 48(2), 257-276.
  31. Şorman, A., Akyürek, Z., Şensoy, A., Şorman, A., & Tekeli, A. (2007). Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey. Hydrology and Earth System Sciences, 11(4), 1353-1360.
  32. Solaimani, K., Darvishi, S., Shokrian, F., rashidpour, M. (2018). Monitoring of temporal-spatial variations of snow cover using the MODIS image (Case Study: Kurdistan Province). Iranian Journal of Remote Sensing & GIS, 10(3), 77-104.
  33. Tang, B.-H., Shrestha, B., Li, Z.-L., Liu, G., Ouyang, H., Gurung, D. R., & San Aung, K. (2013). Determination of snow cover from MODIS data for the Tibetan Plateau region. International Journal of Applied Earth Observation and Geoinformation, 21, 356-365.
  34. Vikhamar, , & Solberg, R. (2003). Subpixel mapping of snow cover in forests by optical remote sensing. Remote Sensing of Environment, 84(1), 69-82.
  35. Wang, X., Xie, H., & Liang, T. (2008). Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sensing of Environment, 112(4), 1497-1513.
  36. Zhang, H., Zhang, F., Che, T., & Wang, S. (2020). Comparative evaluation of VIIRS daily snow cover product with MODIS for snow detection in China based on ground observations. Science of The Total Environment, 138-156.