تشخیص فاز بارش در فواصل زمانی ساعتی و روزانه در شمال غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب و هواشناسی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز

2 استاد گروه آب و هواشناسی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز

3 استادیار گروه آب و هواشناسی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز

چکیده

با وجود اینکه تاکنون مطالعات بسیاری در بررسی مشخصات بارش صورت گرفته ولی تغییرات فاز بارش کمتر مورد توجه بوده و مطالعاتی هم که در این زمینه انجام شده غالبا از داده های روزانه به منظور تشخیص و پیش بینی فاز بارش استفاده کرده اند. در حالیکه شرایط اتمسفری در مقیاس زمانی کمتر از یک شبانه روز نیز می تواند فاز بارش را تغییر دهد. از سوی دیگر پیش بینی نادرست فاز بارش می تواند بعد محیطی یک منطقه بویژه شرایط هیدرولوژیکی و اقلیمی آن را تحت تاثیر قرار دهد. از طرفی بدلیل پیچیدگی فرآیند بارش اتکا به یک عنصر خاص برای تشخیص فاز بارش می تواند عدم قطعیت هایی بدنبال داشته باشد. بنابراین مطالعه حاضر به منظور تشخیص فاز بارش در 19 ایستگاه شمال غرب ایران با مدل KSS انجام شد. داده های مورد استفاده شامل میانگین عناصر دما، رطوبت نسبی، برف و باران در دو فاصله زمانی 3 و 24 ساعته طی دوره آماری 2018-1951 می باشد. اجرای مدل برای داده‌های ساعتی و روزانه انجام شد و دقت مدل با 6 شاخص POD، CSI، PC، TSS، FAR و FBI مورد ارزیابی قرار گرفت. نتایج نشان داد که به طور کلی میانگین عملکرد مدل در تشخیص فاز بارش در محدوده مورد مطالعه بالا است. طبق همه شاخص های بکار برده شده، دقت مدل در تشخیص فاز مایع بارش با داده های ساعتی افزایش می یابد. در حالیکه درمورد بارش های جامد چنین نتیجه ای مشاهده نشد و اختلاف داده های 3 و 24ساعته در آشکارسازی بارش های جامد چندان قابل توجه نبود و حتی طبق شاخص POD داده های روزانه در پیش بینی فاز جامد بارش عملکرد بهتری دارند. از نظر بعد مکانی عملکرد مدل در جنوب شرق و جنوب غرب منطقه نسبت به بخش های دیگر کم تر است .

کلیدواژه‌ها


عنوان مقاله [English]

Detection of precipitation phase in hourly and daily intervals in northwest Iran

نویسندگان [English]

  • Elnaz Ostadi 1
  • saeed Jahaanbakhsh 2
  • Majid RezaiBanafsheh 2
  • Hashem Rostamzadeh 2
  • Ali mohammad Khorshiddoust 3
1 Ph.D Student, , Department of Climatology, Faculty of Geography & Planning, University of Tabriz,
2 . Professor of Climatology, Faculty of Geographical Sciences. Tabriz, Iran
3 Professor of Climatology- Department of Tabriz University
چکیده [English]

One of the significant impacts of climate change is the change in the type of precipitation that occurs in temperate and mountainous areas. Liquid or solid precipitation in form of frozen rain or snow can stop ground transportation, cause power outages, and determine the speed of the basin's response to floods and potential dangers to water resources in drainage basins especially in mountainous areas and, in particular, impose freshwater resources on rivers and glaciers. The type of precipitation can be just as important as the intensity and the amount of precipitation in the seasonal hydrological cycle and the health of ecosystems in high latitudes. The potential benefits and disadvantages of precipitation prediction depend on the form and intensity of precipitation, and the incorrect forecast of precipitation phase can cause problems in managing many areas, including water storage, air and soil moisture, land albedo, and surface currents. Changes in precipitation have more direct impact on society than changes in other meteorological elements. However, it is very difficult to determine the precipitation characteristics of an area due to its temporal and spatial fluctuations. Therefore, an important issue in modern hydrology is to determine the effects of climate change on the share of liquid and solid precipitation and its statistical distribution. Although many studies have been conducted so far to examine precipitation characteristics, changes in the precipitation phase have received less attention and studies in this field have often used daily data to detect and predict the precipitation phase. Atmospheric conditions on a scale of less than one day can also change the phase of precipitation. On the other hand, incorrect forecast of the precipitation phase can affect the environmental dimension of an area, especially its hydrological and climatic conditions. Relying on a specific element to detect the precipitation phase can lead to uncertainties due to the complexity of the precipitation process. Therefore, the present study was conducted to identify the precipitation phase in 19 stations in northwestern Iran with KSS model. The data used include the average of temperature, relative humidity, snowfall, and rain in two time intervals of 3 and 24 hours during the statistical period of 1951-2018. The model was executed for hourly and daily data and the accuracy of the model was evaluated with POD, CSI, PC, TSS, FAR, and FBI indices.

The results were divided into two groups of solid and liquid precipitation and then the accuracy of the model was evaluated using 6 indices. Based on the indicators used, the model's performance in detecting both types of precipitation in the region is very high to the extent that the average evaluation of indicators in most cases is over 90%. The results of this study are consistent with the studies of Koistinen and Saltikoff, where the POD values for liquid and solid precipitation are 0.81 and 0.97 and Gjertsen & Ødegaard for solid and liquid precipitation are 0.97 and 0.84, respectively. Another important goal of this study was to compare the effect of time scale data on the accuracy of the model. The results showed that the use of 3-hour data in detection of the liquid phase of precipitation increases the performance of the model. Based on POD, CSI, PC, and TSS indicators, the model accuracy is 0.92 with hourly data and 0.85 with daily data. While the detection of the solid phase of precipitation in some cases offers contradictory results compared to liquid precipitation and the performance of the model with 24-hour data does not affect the accuracy of the model. Even in the POD index, a slight increase is seen compared to hourly data. The impact of data scale reaches its highest value with FAR index so that using daily data, -350 and 40% change is observed in detection of solid and liquid precipitation compared to the hourly data. On the other hand, the behavior of the model was different in some stations such as Sardasht and Khalkhal stations where the performance of the model was increased or decreased compared to the change of data time intervals, while no change was observed in Sarab station. Another result of the study shows that according to POD, FBI, and CSI indicators, the performance of the model in detecting hourly liquid rainfall is higher than solid hourly rainfall. Moreover, POD, FBI, and TSS metrics also showed an increase in the model's ability to detect solid daily precipitation relative to daily liquid precipitation. Because the study area is one of the areas affected by local masses and short time scale, its prevailing precipitation is in form of liquid precipitation in spring and autumn, while solid precipitation is more the result of migratory and permanent air masses in the region; therefore, based on the results of model evaluation, it can be concluded that the performance of the model in this area of Iran is quite acceptable.

کلیدواژه‌ها [English]

  • Liquid precipitation
  • solid precipitation
  • KSS model
  • northwest Iran
  1. Avanzi, F., Michele, C De., Antonio, G. (2014). Liquid-Solid Partitioning of Precipitation along an Altitude Gradient and Its Statistical Properties: An Italian Case Study, American Journal of Climate Change, 3, 71-82.
  2. Bahrami, F., Javanmard, S., Askari, A., Masudi, N. (2015). Investigation of Annual Changes in Solid-to-Liquid Rainfall Ratio in Mehrabad, Abali, Tabriz and Ardabil Stations. The 5th Regional Conference on Climate Change, Meteorological Organization.
  3. Basati, S., Yarahmadi, D., Nasiri, B. (2015). Study of changes in the precipitation forms and clarify the relative humidity and temperature effects on them (Kermanshah station). Nivar 86(86): 63.
  4. Bech, J., Vidal, V., Ortiz, J. A., Pineda, N., Veciana, R. (2010). Real-time estimation of surface precipitation type merging weather radar and automated station observations. METHODOLOGY, 12, 15.
  5. Behrangi, A., Yin, X., Rajagopal, S., Stampoulis, D., Ye, H. (2018). On distinguishing snowfall from rainfall using near‐surface atmospheric information: C omparative analysis, uncertainties and hydrologic importance. Quarterly Journal of the Royal Meteorological Society, 144, 89-102.
  6. Berg, P., Moseley, Ch., Haerter, JO. (2013). Strong increase in convective precipitation in response to higher temperatures, Nature Geoscience, (6), 181-185.
  7. Catalano, A. J., Loikith, P. C., Aragon, C. M. (2019). Spatiotemporal Variability of Twenty‐First‐Century Changes in Site‐Specific Snowfall Frequency Over the Northwest United States. Geophysical Research Letters, 46(16), 10122-10131.
  8. Chen, RS., Liu, JF., Song, YX. (2014). Precipitation type estimation and validation in China. Journal of Mountain Science 11(4). DOI: 10.1007/s11629-012-2625-x.
  9. Davenport, F. V., Herrera‐Estrada, J. E., Burke, M., Diffenbaugh, N. S. (2020). Flood Size Increases Nonlinearly Across the Western United States in Response to Lower Snow‐Precipitation Ratios. Water Resources Research, 56(1), e2019WR025571.
  10. Faramarzi fard, S., Ghasemi, M. (2013). Analysis of the relationship between spatial factors and snowy days in Iran. Journal of Meteorological Oragnization, 80:3-14.
  11. Fehlmann, M., Gascón, E., Rohrer, M., Schwarb, M., Stoffel, M. (2018). Estimating the snowfall limit in alpine and pre-alpine valleys: A local evaluation of operational approaches. Atmospheric research, 204, 136-148.
  12. Feiccabrino, J. M. (2020). Precipitation phase uncertainty in cold region conceptual models resulting from meteorological forcing time-step intervals. Hydrology Research, 51(2), 180-187.
  13. Froidurot, S., Zin, I., Hingray, B., Gautheron, A. (2014). Sensitivity of precipitation phase over the Swiss Alps to different meteorological variables. Journal of Hydrometeorology, 15(2), 685-696.
  14. Gjertsen, U., Ødegaard, V. (2005). The water phase of precipitation—a comparison between observed, estimated and predicted values. Atmospheric research, 77(1-4), 218-231.
  15. Gorjizadeh, A., Akhond-Ali, A., Shahbazi, A., Moridi, A. (2019). Comparison of Two High-resolution Gridded Precipitation Data Sets at the Upstream of Maroun Dam in Iran.
  16. Heidari, H. (2016). The trend analysis of falling snow and rainfall in selected stations of West Azerbaijan province. Journal of Arid Regions Geographics Studies, 7(26), 110-92.
  17. Hynčica, M., Huth, R. (2019). Long-term changes in precipitation phase in Europe in cold half year. Atmospheric Research, 227, 79-88.
  18. Jahanbakhsh asl, S., Khorshiddust, AM., Alinejad, M. , Purasghar, F., (2016). The effect of climate change on temperature and precipitation, considering the uncertainty of climate models and scenarios (Case study: Urmia Shahrchai basin). Journal of Hydrogeomorphology 2(7):107-122.
  19. Koistinen, J., Saltikoff, E. (1998). Experience of customer products of accumulated snow, sleet and rain. COST75 Advanced Weather Radar Systems, 397-406.
  20. Li, Z., Chen, Y., Li, Y., & Wang, Y. (2020). Declining snowfall fraction in the alpine regions, Central Asia. Scientific reports, 10(1), 1-12.
  21. Ostadi, E., Jahanbakhsh, S., Rostamzadeh, H., Rezaibanafsheh, M., & Khorshiddust, A. M, (2021). Spatio-temporal trend analysis of solid precipitation in Northwest Iran. Arabian Journal of Geosciences, 14(17), 1-10.‏
  22. Raziei, T., Jahanbakhsh, S., Parandeh, K. A., Sari Sarraf, B. (2018). Assesing The Accuracy of The Snow-Rain Phase Sepration Models For Meteorological Weather Stations of The Mountaious Region of
  23. Reng- sheng, Ch., Jun-feng, L., Yao-xuan, S. (2014). Precipitation Type Estimation and Validation in China, J. Mt. Sci, 11(4): 917-925, DOI: 10.1007/s11629-012-2625-x.
  24. Rezaie Banafsheh, M., Jalali Ansaroodi, T., Zarghami, M. (2015). Investigate of Climate Change Impacts on Groundwater Level in Tasuj Basin by Statistical Downscaling Method, Iran – Water Resources Research, 11(2), 97-105.
  25. Rohrer, M. (1989). Determination of the transition air temperature from snow to rain and intensity of precipitation. In WMO IASH ETH International Workshop on Precipitation Measurement, 475-582.
  26. Rostamzadeh, H., RezaeiBanafsheh, M., Hosseinnejad, A. (2019). Identification of non-spatial patterns Hourly variations of temperature on a monthly, seasonal and annual basis (Case Study: Synoptic Station of Tabriz), Climate Change and Climate Disasters, 1(1), 56-76.
  27. Safavi, M. (2017). Calibration and Utilization of TRMM Satellite Data to Estimate Monthly and Annual Rainfall in South East of Iran (Doctoral dissertation, university of zabol).
  28. Saltikoff, E., Koistinen, J., & Hohti, H. (2000). Experience of real time spatial adjustment of the ZR relation according to water phase of hydrometeors. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(10-12), 1017-1020.
  29. Schmid, W., Mathis, A., & Keller, U. (2002). Nowcasting the risk of snowfall and freezing rain with radar and ground data. In Proc. 11th PIARC Congress, Sapporo, www. meteoradar. ch/pdf/181_abf_e_Sch mid. pdf.
  30. Twardosz, R., Łupikasza, E., Niedźwiedź, T., Walanus, A. (2012). Long-term variability of occurrence of precipitation forms in winter in Kraków, Poland, Climatic Change, 113:623–638, DOI 10.1007/s10584-011-0352-x.
  31. Wang, Y. H., Broxton, P., Fang, Y., Behrangi, A., Barlage, M., Zeng, X., & Niu, G. Y. (2019). A Wet‐Bulb Temperature‐Based Rain‐Snow Partitioning Scheme Improves Snowpack Prediction Over the Drier Western United States. Geophysical Research Letters, 46(23), 13825-13835.
  32. Ye, H. (2008). Changes in Frequency of Precipitation Types Associated with Surface Air Temperature over Northern Eurasia during 1936–90, Journal of Climate, V 21, 5807- 5819.