پیکربندی بهینه مدل RegCM4.5 مبتنی بر پهنه‌های اقلیمی برای پیش‌بینی بارش دوره پربارش ایران (نوامبر-می) ، مطالعه موردی: سال‌های 2019-2014

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای هواشناسی، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

2 استادیار اقلیم‌شناسی، پژوهشگاه هواشناسی و علوم جو، پژوهشکده اقلیم‌شناسی، مشهد، ایران

3 دانشیار هواشناسی، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

4 دانشیاریار اقلیم‌شناسی، پژوهشگاه هواشناسی و علوم جو، پژوهشکده اقلیم‌شناسی، مشهد، ایران

5 استادیار اقلیم‌شناسی، دانشگاه فردوسی مشهد، ایران

چکیده

در این مقاله با درنظر گرفتن پهنه‌های اقلیمی کشور، پیکربندی مدل منطقه‌ای اقلیمی RegCM4.5 انجام شده است؛ به این صورت که پس از انتخاب طرحواره‌های لایه مرزی سیاره‌ای و سطح زمین، انتخاب طرحواره مناسب همرفت در هر منطقه از حوزه مدل بر اساس طبقه‌بندی اقلیمی ایران با استفاده از نمایه دمارتن انجام شد. برای این منظور ابتدا پهنه ایران بر اساس نمایه دمارتن به هفت طبقه اقلیمی خیلی مرطوب، مرطوب، نیمه مرطوب، مدیترانه‌ای، نیمه خشک و خشک تقسیم‌بندی شد. دوره مورد مطالعه شامل 5 دوره پربارش 2019-2014 (نوامبر تا می) بوده است. تفکیک افقی مدل منطقه‌ای 30 کیلومتر، طرحواره‌های لایه مرزی سیاره‌ای و سطح زمین به ترتیب Holslag و BATS در نظر گرفته شد. در دوره یادشده، ابتدا در چند آزمایش طرحواره‌های همرفت Kuo، Grell، Emanuel، Tiedtke و Kain برای دستیابی به پیکربندی بهینه مورد آزمایش قرار گرفتند. نتایج نشان دادند که در اقلیم‌های خیلی مرطوب، مرطوب، نیمه مرطوب و مرطوب طرحواره همرفت Tiedtke ، در مناطق نیمه خشک طرحواره Grell و در مناطق خشک طرحواره Kuo کمترین اریبی را نسبت به سایر طرحواره‌های همرفت داشتند. لذا پیش‌بینی فصلی کشور با تلفیق طرحواره‌های منطقه‌ای ارائه شد که اریبی میانگین آن در سطح کشور در طرحواره‌های تلفیقی، Tiedtke ، Grell و Kuo به ترتیب 0.45، 0.79، 1.01 و 0.69 میلیمتر محاسبه شد. از طرف دیگر نمودار ROC طرحواره های مختلف نشان داد که دو طرحواره Tiedtke و Grell بهترین نتایج را برای پیش‌بینی فصلی میانگین ماهانه بارش دارند. نتایج نشان دادند که طرحواره تلفیقی منطقه‌ای (TGK) بین 54 تا 126 درصد نسبت به طرحواره‌های منفرد بهبود در مقادیر خطا را نشان می‌دهد. در مجموع می‌توان گفت انتخاب پیکربندی بهینه بر مبنای ایده طرحواره همرفت مبتنی بر طبقه اقلیمی می‌تواند عملکرد مدل منطقه‌ای RegCM4.5 را در پیش‌بینی فصلی بارش ایران افزایش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal configuration of RegCM4.5 model for rainfall forecasting in Iran based on climatic zones (November-May), Case study: 2019-2014

نویسندگان [English]

  • arezu eghbali 1
  • Iman Babaeian 2
  • Majid Azadi 3
  • Majid Habibi Nokhandan 4
  • Azar Zarrin 5
1 Atmospheric Science and Meteorological Research Center,,Tehran,Iran
2 Climatological Research Institute
3 Atmospheric Science and Meteorological Research Center
4 Climatological Research Institute
5 Climatological Research Institute
چکیده [English]

Seasonal forecasting has always been one of the challenges in forecasting Iran's diverse climate. In the last one or two decades, many efforts have been made to develop and improve the climate models of the restricted area and to minimize these challenges, but the problems and challenges still remain. Convective parameterization schemes are always one of the sources of error in regional climate models that have a significant impact on model outputs. Therefore, one of the most important issues in implementing the model is choosing the appropriate convective scheme from the existing schemes. One of the methods of forecasting precipitation in our country is the use of dynamical downscaling by RegCM model. Most of the studies that have been done for this purpose in the country so far have considered single convection schemes for the whole country, the results of which have not shown a significant improvement in rainfall forecasting.

Materials and methods

In this study, a relatively new approach was adopted, so that convection schemes were selected appropriate to the climate of the region, and then the final forecast of the entire country by regional integration of each climate zone was presented. In this paper a relatively new perspective of the climatic zones of the regions, was used for optimum configuration of the RegCM4.5 model; The study area in this study is Iran, which includes 25 to 41 degrees north latitude and 47 to 63 degrees east longitude, but the model area ranges from 30 to 70 degrees east longitude and 10 to 55 degrees north latitude. It covers important geographical features, including mountains and seas. In this study, the output of the CFSv2 global climate model originating from November 1 in each year as the boundary condition data has been used and the CRU precipitation data has been used as reanalysis data to test the output of the RegCM model. Because CRU data are averaged monthly, they are suitable for studies that examine monthly averages. CRU data have already been used by various researchers in the country to validate the output of the RegCM model. After selecting the schemes of the planetary boundary layer and surface layer, the selection of the appropriate Cumulus Parametrization Schemas(CPS) was done based on Iran's climatic classification using the Demarten index. This method is the simplest and most common method for climate classification that precipitation and temperature variables are effective in calculating climate index, and precipitation and temperature data have also been used from the CRU database. For this purpose, Iran was first divided into seven very humid, humid, semi-humid, Mediterranean, semi-arid and arid climates based on the Demarten index, and each grid points of the study area were assigned the relevant climate index. The share of each climatic class in zoning was obtained as follows; Arid 32.4%, Semi-Arid 30.1%, Mediterranean 7.6%, Semi-humid 7.6%, Humid 10.5% and Highly humid 11.8%. The study period was 5 rainy seasons 2019-2014 (November to May) that the beginning of each simulation with the initial condition data on the first of November and its end at the end of May (as the end of the rainy season in the country) in each year. The horizontal resolution considered to be 30 km regional model, the planetary boundary layer schemes and the surface layer Holslag and BATS were considered, respectively. Kuo, Grell, Emanuel, Tiedtke and Kain convection schemes were tested during this period to achieve optimal configuration.

Results and discussion

In the first stage, mean precipitation and its RMSE from individual and integrated schemas were calculated, but due to the fact that the Emanuel and Kain schemes did not rank higher in any of the model experiments in terms of climatic classes and have more errors than others, theywere removed from the configuration selection process. The results showed that in very humid, humid, semi-humid and humid climates the Tiedtke convection scheme, in the semi-arid regions the Grell scheme and in the arid areas of the Kuo scheme had the least bias compared to other convection schemes. Therefore, the seasonal forecast of the country was presented by combining regional schemas, the average bias of which was calculated at 0.45, 0.79, 1.01 and 0.69 mm in the integrated schemes of Tiedtke, Grell and Kuo, respectively. On the other hand, in addition to calculating the ability of different schemas to predict precipitation using the RMSE index, the area under the ROC curve was also calculated in three classes less than normal (BN), normal (NN) and more than normal (AN) for different climates. For this purpose, in each precipitation layer, the number of schemas that predicted precipitation in different climates and had the largest area under the curve compared to other schemes was extracted. ROC diagrams of different schemas showed that Tiedtke and Grell schemas have the highest ability to predict less than normal, normal and more than normal rainfall classes. The results showed that the regional integrated scheme (TGK: Tiedtke, Grell and Kuo) showed an improvement of 54 to 126% compared to the individual schemas. In general, it can be said that choosing the optimal configuration based on the idea of climate-based convection scheme can increase the performance of the RegCM4.5 regional model in seasonal precipitation forecast in Iran.

Conclusion

Although a study with a regional climatic zones perspective was not found on Iran, but some studies have found the Tiedtke scheme suitable for our country (Alizadeh Choubari et al., 1398), which with the findings of this study in which the Tiedke scheme for four of the six climates used in this study are considered appropriate. On the other hand, Zarrin and Dadashi (1399) used the Grell scheme to study the events of the partial rainfall in Iran by RegCM4 model, which in this study was found to be suitable for semi-arid climate. In addition, it was observed that in the study period of seven months, the most RMSE error occurred in April, which is the month of transition from cold to warm season.

کلیدواژه‌ها [English]

  • Seasonal forecast
  • Iran
  • Climate classification
  • RegCM4.5
  • CFSv.2
  1. Adeniyi, M., 2014, Sensitivity of different convection scheme in RegCM4 for simulation of precipitation during the Septembers of 1989 and 1998 Over West Africa, Theor. Appl. Climatol., 115(1-2), 305-322.
  2. Ali, Sh. Li, D. Congbin, F. Yang, Y. Performance of Convective Parameterization Schemes in Asia Using RegCM: Simulations in Three Typical Regions for the Period 1998–2002, ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 32, MAY 2015, 715–730, 2014.
  3. Alizadeh, A. (1394). Principles of Applied Hydrology, Imam Reza (AS) University, Pages: 942.
  4. Alizadeh Choubari A., Marjani S., Ghadimi M., 1398, Performance of the fourth version of the regional climatic model with different physical parameters in Iran: A case study of 2010, Iranian Journal of Geophysics, 13 (1), 151-132.
  5. Alizadeh Chobari, Omid, Marjani, Sajedeh, Ghadimi, Morteza, Performance of the fourth version of the regional climate model with different physical parameters in Iran: A case study of 2010, Iranian Journal of Geophysics, Volume 13, Number 1, 1398, pp. 132-151.
  6. Cotton, W. R., Bryan, G. and Van den Heever, S. C., 2011, Stom and Cloud Dynamics, Vol. 99, Academic press, Second Edition, 820p.
  7. Elguindi, N., X. Bi, F. Giorgi, B. Nagarajan, J. Pal, F. Solmon, and G. Giuliani, 2013: Regional Climate Model RegCM User Manual Version 4.4. The Abdus Salam International Centre for Theoretical Physics, Strada Costiera, Trieste, Italy October 21, 2013, 54 pp
  8. Evans, J. P., Smith, R, B. and Oglesby, R. J., 2004, Middle East climate simulation and dominant precipitation processes, Int. J. Climatol., 24(13), 1671-1694.
  9. Fuentes-Franco,R. and Coppola, E., 2013, Assessment of RegCM4 simulated inter-annual variability and daily-scale statistics of temperature and precipitation over Mexico, Clim Dyn (2014), 42,629-647.
  10. Giorgi, F., Marinucci, M., Betes, G., 1993b, Development of a second generation regional climate model (regcm2) i: Boundary layer and radiative transfer processes, Monthly Weather Review, 2794-2813.
  11. Giorgi, F.et al., 1993c, Development of a second generation regional climate model (regcm2) ii: Convective processes and assimilation of lateral boundary conditions, Monthly Weather Review, 2814-2832.
  12. Haji Jafar Gholi Khan Pazouki, Roozbeh, 2015, Study of convective parameterization schemas in the RegCM regional-climatic model and its application in Iran, Thesis for receiving a master's degree in meteorology, University of Tehran.
  13. Harris, I., Osborn, T, J., Jones, P., Lister, D., 2020, Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Scientific data, https://doi.org/10.1038/s41597-020-0453-3.
  14. Irannejad, P., and Ahmadi Givi, F., and Pazouki, R. (1388). The role of different convection parameterization methods in simulating winter temperature and precipitation fields with RegCM regional-climatic model in Iran. Journal of Earth and Space Physics, 35 (1), 101-120.
  15. Khamchin Moghaddam, F. and H. Rezaee Pajand. 2009. Criticising de martonne regionalization method according tolinear moments for maximum daily precipitation in Iran. Journal of Technical-Engineering, 2(2): 93-103. (In Persian).
  16. KomKoua Mbienda, A. J., Guenang, G. M., Tanessong, R. S., Ashu Ngono, S. V., Zebaze, S., Vondou, D. A., 2020, Possible influence of the convection schemes in regional climate model RegCM4.6 for climate services over Central Africa, 10.1002/met.1980.
  17. Mamgain, A., L. Mariotti, E. Coppola, F. Giorgi, and S. K. Dash, 2013: Sensitivity of RegCM4.3 two convection schemes on Indian summer monsoon for the South Asia CORDEX domain. EGU General Assembly Conference Abstracts, Vol. 15, 4812.
  18. Mohammadi, Fahimeh, Zarrin, Azar, Babaian, Iman. (1394). Efficiency of RegCM4 climate model in simulating cold period rainfall in Fars province Case study: 2010-2010 period. Earth and Space Physics, 41 (3), 511-524. doi: 10.22059 / jesphys.2015.53332.
  19. Pal, J. S., Giorgi, F., Bi, X. and Ashfaq, M., 2007, Regional climate modeling for the developing world: the ICTP regCM3 and RegCNET, Bull. Amer. Meteor. Soc., 88(9), 1395.
  20. Pal, J., Small, E. & Eltahir, E., 2000, Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within regcm, Journal of Geophysical Research-Atmospheres 105, PP. 29579-29594.
  21. Molinari, j., 1993, An Overview of Cumulus Parameterization in Mesoscale Models. In: The representation of cumulus convection in numerical models, Edited by: K,A., Emanuel and D.J., Reymond, American Meteorology Society, Meteorological Monographs, 24 (46), 155-158.
  22. Rahman, M. M., Islam, M. N., Ahmed, A. U. and Afroz, R., 2007, Comparison of RegCM3 simulated meteorological parameters in Bangladesh: Part I-Preliminary result for rainfall, SriLankan j. Phys., 8, 1-9.
  23. Zarrin A., Dadashi Roudbari A., 1399, Investigating the Capability of RegCM4 Dynamic Model in Simulating Farin Precipitation Indices as the Most Important Indicators of Climate Change in Iran, Sixth Regional Conference on Climate Change and Global Warming, March 5-16, 2016, Zanjan.