بررسی دقت مدل WRF و تصاویر ماهواره‌ای در شبیه سازی گرد‌و‌خاک جنوب شرق ایران: مطالعه موردی آوریل 2017

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای رشته هواشناسی،دانشگاه علوم و تحقیقات تهران

2 دکتری هواشناسی ، دانشیار گروه علوم زمین دانشگاه علوم و تحقیقات تهران ، تهران

3 دکتری منابع آب ، دانشیار پژوهشکده حفاظت خاک و آبخیزداری کشور ، تهران

4 دکتری هواشناسی ، دانشیار پژوهشکده هواشناسی و علوم جو ، تهران

5 دکتری جغرافیلی طبیعی-ژئومرفولوژی ، استادیار پژوهشکده حفاظت خاک و آبخیزداری کشور ، تهران

چکیده

امروزه وقوع توفان‌های گردوخاک یکی از معضلات مهم بسیاری از مردم جهان است و هر ساله سبب بروز خسارات فراوان در بخش‏های مختلف زندگی انسان‏ها می‌شود. کشورهایی که در کمربند گردوخاک قرار دارند بیشتر از این معضل زیست محیطی آسیب می‏بینند. ایران نیز به عنوان کشوری در غرب آسیا، همواره از توفان‏های گرد‌و‌خاک آسیب دیده است، توفان‏هایی که عمدتا منشا خارجی دارند. هدف از این مطالعه، بررسی پدیده گرد‌و‌خاک در جنوب‏شرق ایران و منطقه هامون است. به این منظور، مورد مطالعاتی 26 تا 28 آوریل در منطقه هامون مورد بررسی قرار گرفت. گرد‌و‌خاک 26 تا 28 آوریل نشان داد که در برخی از ایستگاه‏های منطقه دید افقی به کمتر از 1000 متر رسیده است و تصاویر رنگ حقیقی سنجنده مودیس و RGB ماهوارهMSG به خوبی توده‌ی گرد‌و‌خاک در منطقه را نشان می‏دهند. همچنین تصویر بازتابی تصحیح شده سنجنده مودیس توده گرد‌و‌خاک را واضح‏تر نشان داده‏اند. به نظر می‏رسد عمق نوری ذرات با استفاده از الگوریتم DT و DB با قدرت تفکیک 10 کیلومتر، غلظت ذرات را بیشتر از مقدار واقعی نشان می‌دهد. مقایسه خروجی مدل WRF-Chem با مدل MERRA2 حاکی از آن است که هر دو مدل شدت غلظت سطحی گرد‌و‌خاک را در منطقه هامون به خوبی نشان می‏دهند، هر چند مقادیر خروجی مدل WRF-Chem بیشتر از مقادیر غلظت سطحی خروجی مدل MERRA2 است. مقایسه خروجی غلظت سطحی گرد‌و‌خاک این دو مدل با غلظت PM10 گزارش شده در ایستگاه زابل، نشان‏دهنده آن است که داده‏های خروجی هر دو مدل بسیار بیشتر از داده‏های گزارش شده ایستگاهی است. همچنین در این مورد مطالعاتی، میانگین مربعات خطا مدل MERRA2در ایستگاه زاهدان کم بوده که نشان دهنده عملکرد قابل قبول این مدل در این ایستگاه در مورد مطالعاتی مذکور است. همچنین خطای MSE مدل WRF-Chem در ایستگاه زاهدان بالا بوده که نشان‏دهنده عملکرد ضعیف این مدل در ایستگاه زابل است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the accuracy of WRF model and satellite imagery in dust simulation in southeastern Iran: A case study April 2017

نویسندگان [English]

  • sahar zirakzadeh 1
  • Amir hossein meshkatee 2
  • Mir Masoud Kheirkhah Zarkesh 3
  • Saviz Sehatkashani 4
  • Fazel Iranmanesh 5
1 PhD Student of Meteorology , Islamic Azad University, Science and Research Branch, Tehran
2 Associated of Islamic Azad University, Science and Research Branch, Tehran
3 PhD in Water Resources, Associated of Soil Conservation and Watershed Management Research Institute, Tehran
4 Faculty member of Atmospheric Science AND Meteorological Research Center(ASMERC)
5 PhD in Natural Geography-Geomorphology, Assistant of Soil Conservation and Watershed Management Research Institute, Tehran
چکیده [English]

Dust storm is One of the natural phenomena that has a great impact on human life and the environment. Every year, some countries in the world where dust sources are located are affected by soil storms. Also, many more countries that do not have sources of dust particles are affected by the transfer of dust particles. Dust storms damage human health and respiratory system, disrupt power lines, disrupt road and air transportation, and agricultural sector Severely affected. The most important sources of dust production are deserts. After that, dried lakes can be named as the second source of dust production in the world. Glaciers and altered agricultural lands are other sources of dust in the world The largest source of dust in the world is in the Africa that imports large amounts of dust particles into the Earth's atmosphere each year. The Sahara Desert is the largest desert in the world with an area of 9 million square kilometers and is located in 10 countries in North Africa. Kok et al showed that sub-Saharan Africa emits about half of the world's dust. Then, the dust sources in the Middle East and Central Asia are in the second place and 30% of the production sources of global dust storms are located in them. One of the most important dust regions is the East Asian deserts, which emit 11% of the world's dust particles. Therefore, the Middle East is one of the most important regions in the world where many soil sources are located. In the Middle East, most of the sources of dust are located in Iraq, Syria and Saudi Arabia, but some of these sources are located in Iran, although the sources of production in Iraq and Syria are less active, however, these springs affect different parts of Iran by producing dust storms. In addition to scattered domestic springs, the main springs producing dust in Iran include the dried parts of the lake and Hamoon wetland in the southeast, the dried parts of the Horalhvizeh wetland (Hur al-Azim) in the southwest and part Of dried Urmia Lake in northwestern Iran. Sistan and Baluchestan province, which is located in southeastern Iran, in addition to high temperatures and low rainfall, is affected by 120-day winds. Today, the occurrence of dust storms is one of the most important problems of many people in the world and every year it causes a lot of damage in various aspect of human life. Countries in the dust belt are most affected by this environmental problem. As a country in the Middle East, Iran has always been affected by dust storms, which mainly originated from dust sources in other countries. The purpose of this study is to investigate the dust phenomenon in southeastern Iran and the Hamoon region. For this purpose a severe dust case was examined on April 26-28 in the Hamoon Lake region. The investigation from April 26 to 28 showed that in some stations in the region, the horizontal visibility has reached less than 1 kilometer, and the true color images of the Modis sensor and the RGB of the MSG satellite shows well the dust mass in this area. Also, the corrected reflection image of the MODIS sensor has shown the dust mass more clearly. It seems that the optical depth of the particles by using the DT and DB algorithm with a resolution of 10 km overestimated the concentration of dust particles in the study area. Comparing the output of the WRF-Chem model with the MERRA2 model shows that both models show the intensity of dust concentration in the Hamoon area, although the output values of the WRF-Chem model are higher than the output surface concentration values of MERRA2 model. Comparing the output of surface dust concentration of these two models with the PM10 concentration measured in Zabol station, shows that the two models overestimated dust concentration in comparison with the reported station data. Also, in this case study, the mean square error (MSRT) of MERRA2 model in Zahedan station was low, which indicates the acceptable performance of this model in this station in this dust case. Furthermore, the MSE of WRF-Chem model in Zahedan station is high, which indicates the poor performance of this model in Zabol station.

کلیدواژه‌ها [English]

  • Dust storm
  • statistical investigation
  • satellite images
  • numerical models
  • Hamoon Lake
  1. Alkhatib, M. , S.D .Cabrera, and T. E .Gill, 2012, Automated detection of dust clouds and sources in NOAA-AVHRR satellite imagery. In 2012 IEEE. Southwest Symposium on Image Analysis and Interpretation, pp. 97-100.
  2. Alizadeh-Choobari, O., P. Zawar-Reza, and A. Sturman, 2014, the “wind of 120 days” and dust storm activity over the Sistan Basin. Atmospheric research.143, pp.328-341.
  3. , A., 2019, Detection and zoning of dust masses in southwestern Iran using remote sensing and GIS. Master Thesis, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz.
  4. Bullard, E. J., S. P. Harrison, M. C. Baddock, N. Drake, T.E. Gill, G. McTainsh, Y. Sun, 2011, Preferential dust sources: A geomorphological classification designed for use in global dust-cycle models .Journal of Geophysical Research, Earth Surface ,AN AGU JOURNAL, Volume 116, Issue F4.
  5. Banks, J.R., K. Schepanski, B. Heinold, Hünerbein, A. and H. E. Brindley, 2018, The influence of dust optical properties on the colour of simulated MSG-SEVIRI Desert Dust infrared imagery. Atmospheric Chemistry and Physics, 18(13), pp.9681-9703.
  6. Chin, M., R. B. Rood, S. J. Lin, J. F. Muller, and A. M. Thompson, 2000, Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. Geophys. Res.-Atmos. 105(D20), 24671–24687.
  7. Chen, F., and J. Dudhia, 2001, Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly weather review, 129(4), pp.569-585.
  8. Ek, M. B., K.E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno and J.D. Tarpley, 2003, Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmospheres, 108(D22).
  9. Esmaili, O., M. Tajrishy and P. D. Arasteh, 2006, Evaluation of dust sources in Iran through remote sensing and synoptical analysis. In Atlantic Europe conference on remote imaging and, spectroscopy, pp. 136-43.
  10. Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik and S. J. Lin, 2001, Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research: Atmospheres.106 (D17):20255-73.
  11. Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock and B. Eder, 2005, fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), pp. 6957-6975.
  12. Goudie, A. S, 2019, Dust Storm and Human Health. Extreme Weather Events and Human Health, pp 13-24, springer link.
  13. Grasso, L., D. Bikos, J. Torres, J. F. Dostalek, T. C. Wu, J. Forsythe, H. Q. Cronk, C. J. Seaman, S.D. Miller, E. Berndt and H. G. Weinman, 2021, Satellite imagery and products of the 16–17 February 2020 Saharan Air Layer dust event over the eastern Atlantic: impacts of water vapor on dust detection and morphology. Atmospheric Measurement Techniques, 14(2), pp.1615-1634.
  14. Hamzeh, N.H., Karami, S., Kaskaoutis, D.G., Tegen, I., Moradi, M. and Opp, C., 2021. Atmospheric dynamics and numerical simulations of six frontal dust storms in the Middle East region. Atmosphere, 12(1), p.125.
  15. Hogan, T.F., and T. E. Rosmond, 1991, the description of the Navy Operational Global 534 Atmospheric Prediction System's spectral forecast model. Monthly Weather Review, 119(8), pp.1786-1815.
  16. Hong, S., Y. Noh and J. Dudhia, 2006, a new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, pp. 2318–2341.
  17. Kain, J. S. and J. M. Fritsch, 1993, Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In The representation of cumulus convection in numerical models. American Meteorological Society. Boston. MA, pp. 165-170.
  18. Khalesifard, H., and F. Bayat, 2018, CALIPSO RECORDINGS AND MONITORING DUST STORMS OVER THE OPEN SEAS IN SOUTH OF THE IRAN PLATEAU, EPJ Web of Conferences, 176. 05027, ILRC 28.
  19. Karegar, E., N. Hossein Hamzeh, J. Bodagh Jamali, A. Ranjbar Saadat Abadi, M. Moeinaddini and H. Goshtasb, 2019, Numerical simulation of extreme dust storms in east of Iran by the WRF‑Chem model, Natural Hazards, 99,  769–796.
  20. Kok, J. F., A. A. Adebiyi, S. Albani, Y. Balkanski, R. Checa-Garcia, M. Chin, P.R. Colarco, D. S. Hamilton, Y. Huang, A. Ito and M. Klose, 2021, Contribution of the world's main dust source regions to the global cycle of desert dust. Atmospheric Chemistry and Physics, 21(10), pp. 8169-8193.
  21. Lin, Y. L., R. D Farley and H. D. Orville, 1983, Bulk parameterization of the snow field in a cloud model. Journal of Applied Meteorology and climatology, 22(6), pp. 1065-1092.
  22. Mahowald, N. M., D. R. Muhs, S. Levis, P. J .Rasch, M. Yoshioka, , C. S. Zender and C. Luo, 2006, Change in atmospheric mineral aerosols in response to climate: Last glacial period. Preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res.- Atmos, 111(D10), D10202, doi:10.1029/2005JD006653.
  23. Middleton, N., 2009, Deserts: a very short introduction, book. Publisher: Oxford University press,  DOI:10.1093/actrade/9780199564309.001.0001.
  24. Morcrette, J. J., O. Boucher, L. Jones, D. Salmond, P. Bechtold, A. Beljaars, A. Benedetti, A. Bonet, J. W. Kaiser, M. Razinger, M. Schulz, S. Serrar, A. J. Simmons, M. Sofiev, M. Suttie, A. M. Tompkins and A. Untch, 2009, Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling. J. Geophys. Res. - Atmos, 114, D06206, doi: 10.1029/2008JD011235.
  25. Middleton, N. J., 2017, Desert dust hazards: A global review. Aeolian Research, volume 24. pp 53-63, ELSEVIER.
  26. Moridnejad, A., N. Karimi, and P. A. Ariya, 2015, A new inventory for middle east dust source points. Environmental monitoring and assessment, 187(9), pp.1-11.
  27. Middleton, N. J., 2017, Desert dust hazards: A global review. Aeolian research, 24, pp. 53-63.
  28. Middleton, N., 2019, Visibility and Trends in Dust Storm Frequency on Decadal Timescales: Climatic Drivers and Human Impacts. Geosciences. 9(6), 261.
  29. Namdari, S., Kh. Valizadeh Kerman and A. Sorooshian, 2021, Analysis of some factors related to dust storms occurrence in the Sistan region.Environmental Science and Poluttion Research. Springer link. 28,  45450–45458.
  30. Obukhov, Y.N. and R. Tresguerres, 1993, Hyperfluid—a model of classical matter with hypermomentum. Physics Letters A, 184(1), pp. 17-22.
  31. Petzold, A., K. Rasp, B. Weinzierl, M. Esselborn, T. Hamburger and A. Dornbrack, 2009, Saharan dust absorption and refractive index from aircraft-based observation during SAMUM2006. Journal of Tellus. 61, pp. 118 - 130.
  32. Rousseau, D. D., D. Duzer, J. L. Etienne, G. Cambon, D. Jolly, J. Ferrier and P. Schevin, 2004, Pollen record of rapidly changing air trajectories to the North Pole. Journal of Geophysical Research, VOL. 109, D06116, doi: 10.1029/2003JD003985.
  33. Stohl, A., 1998, Computation, accuracy and applications of trajectories - a review and bibliography, Atmospheric Environment, 32, pp. 947 - 966.
  34. Shamshiri, S., R. Jafari, S. Soltani and N. Ramezani, 2014, Dust detection and mapping in Kermanshah province using MODIS satellite imagery. Iranian Journal of Applied Ecology, 3(8), pp. 29-42.
  35. Sharratt, B. and B. Auvermann, 2014, Dust pollution from agriculture. Encyclopedia of agriculture and food systems, 2, pp. 487-504.
  36. Wild, O., X. I. N. Zhu and M. J. Prather, 2000, Accurate simulation of in-and below-cloud photolysis in tropospheric chemical models. Journal of Atmospheric Chemistry, 37(3), pp. 245-282.
  37. Wei, T, Zh. Dong, Sh. Kang, X. Qin and Zh. Guo, 2017, Geochemical evidence for sources of surface dust deposited on the Laohugou glacier, Qilian mountains, Volume 79, Pages 1-8.
  38. WMO Airborne dust bulletin. No.1, 2017.
  39. Zhang, M., B. Huang and Q. He, 2017, An evaluation of four MODIS collection 6 aerosol products in a humid subtropical region. Remote Sensing, 9(11), p. 1173.
  40. Schlesinger, P., Y. Mamane and I. Grishkan, 2006, Transport of microorganisms to Israel during Saharan dust events. Aerobiologia, 22(4), p. 259.

 

  1. Sobhani, B., B. Salahi and A. Goldoust, 2015, Investigation of dust and evaluation of its predictability based on statistical methods and ANFIS model in Zabol station. Geography and development, 38. Pp.123-138.
  2. Hamidianpour, M., A. Mofidi and M. Salighe, 2015, Analysis of the nature and structure of Sistan wind. Iranian Journal of Geophysics. 10(2), pp. 83-109.
  3. Yarmoradi, Z., B. Nasiri, GH. Moammadi and M. Karampour, 2019, Analysis and tracking of dust storm entry routes to eastern Iran using HYSPLIT particle lagrangian distribution model. Environmental Erosion Research. 33. (1:9), pp. 27-