ارزیابی الگوی مکانی ناایستایی بارش و مقادیر حدی آن در سناریوهای مختلف تغییر اقلیم در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی محیط زیست، دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران

2 استادیار دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران

چکیده

بررسی الگوی تغییرات متغیرهای اقلیمی همواره از موضوعاتی است که توجه بسیاری از محققان را به خود جلب کرده است. این الگوی می تواند در تصمیم مدیران حوزه آب در آینده اثر گذاشته و آن‌ها را به منظور اخذ تصمیم بهینه در مدیریت منابع آب یاری رساند. هدف از این پژوهش بررسی تغییرات توزیع‌ بارش در ایستگاه‌های مختلف در کشور ایران است. آمار طولانی مدت مشاهداتی و تخمین‌ شرایط آتی بارش در سه سناریو مختلف بررسی شده و با استفاده از آماره‌های مختلف همچون فاصله انرژی، کولموگرف-اسمیرنوف، جنسون-شنون، من-کندال در سناریوهای مختلف و دوره مشاهداتی بررسی شده است. توزیع بارش متاثر از تغییر اقلیم و بر اساس سناریوهای مربوطه در سال‌های آینده در مناطق شمال شرقی و همچنین قسمت جنوبی دامنه زاگرس بصورتی ویژه‌تری نسبت به سایر مناطق (در ارتباط مستقیم با اثر افزایش گاز‌های گلخانه‌ای) تغییرات بیشتری را تجربه می‌کنند. همچنین تنوع مقادیر در روش فاصله انرژی بسیار محسوس‌تر از دیگر روشهاست که این خود به معنای قدرت تفکیک با توجه به این شاخص در میان ایستگاه‌های مورد بررسی است. همچنین با محاسبه دوره بازگشت‌های مختلف بارش بیشینه سالانه در دوره مشاهداتی و در سناریوهای انتشار مختلف در آینده، مقادیر بیشینه بارش نیز مورد مطالعه و تحلیل قرار گرفتند. بر اساس این نتایج، جابجایی قابل توجه الگوی توزیع و مقادیر مد و میانه بارش حدی را متناسب با افزایش شدت اثر گازهای گلخانه‌ای نسبت به مقدار متناظر در دوره مشاهداتی در کل کشور را شاهد هستیم. تحلیل این مقادیر مبین تغییر توزیع بارش‌های حدی در دوره آتی بود بطوریکه با افزایش میزان رهاسازی گازهای گلخانه‌ای، بازه تغییرات و مقدار مد و میانگین افزایش خواهد یافت نتایج این تحقیق نشان داد افزایش سطح رهاسازی گازهای گلخانه‌ای می‌تواند موجب افزایش میانگین بارش و بروز بارش‌های گسترده و شدید شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Unstationary and Extreme Value Patterns of Precipitation over Iran considering Impacts of Climate Change

نویسندگان [English]

  • Mohammad M. Mohammadpour Khouie 1
  • Mohsen Nasseri 2
1 MS Student, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 Member of academic board, Civil Enge, Department, university of Tehran
چکیده [English]

Introduction

Greenhouse gases emission cause the rising average temperature of the Earth and has disturbed the global and local water cycle (IPCC, 2007). Precipitation is one of the most important climatic variables, which has been affected spatiotemporally by climate change. Its effects are not uniformly influenced the terrsitrial areas. Changes in the number of rainy days, extreme statitics of precipitation (and their variation of mean and standard deviation), etc. are those reported consequences of climate change over the world. The aim of this study is not to analyze the significances of climate change on the precipitation patterns and its extreme behavior, and which stations would be behaved in the projected future climate change scenarios farther from their historical pattern. The implemented methods are briefly explained in the following.

Methods

To assess the effects of climate change on distribution of precipitation in Iran, the downscaled precipitation over the network of 288 rain gauge stations have been adopted from Pahlavan et al. (2018), which are scattered over different areas/provinces on Iran. They used CanESM2 GCM model and statistically downscaled the precipitation values to project future climate with three different scenarios according to the various GHGs emission levels. The outputs of the current research are used to investigate the effects of climate change on precipitation distributions and their extreme values. To achieve the goal, three different steps have been performed. In the first step, the stationarity of precipitation was examined both in the historical and projected future scenarios via the Mann-Kendal test (Kendall, 1948; Mann, 1945). In the second step, the deviation of precipitation distributions in each scenario from their historical periods was determined. To assess the issue, three divergence methods were performed which are known in the literature as Energy Distance (Székely & Rizzo, 2013), Kolmogorov Smirnov test (Massey, 1951), and Jenson-Shannon divergence (Fuglede & Topsoe, 2004). Finally, the annual maximum precipitation values (in each period and scenarios) have analyzed via GEV distribution to examine how would be distributions of the extreme values of climate change scenarios in Iran. In the follow, the results are described in brief.

Results

The results of stationarity analysis showed that in the historical period, there are some stations (5.5% of them) with non-stationary behavior. As reported in the previous report (Kottek et al., 2006), these stations are located in warm and dry areas, as well. The stationarity tests of the projected future scenarios show the share of non-stationary stations increases as well as the RCPs. According to the results, the portion of non-stationarity stations of the projected climate change scenarios (2.6, 4.5, and 8.5 RCPs) are increased up to 13%, 22%, and 56% of the whole stations, respectively.

In the next step, three divergence metrics have been used to evaluate the future climate scenarios, and the results showed that the stations in the northeast and southwest of Zagros Mountains are more diverged from their historical distributions. Comparing the historical and future scenarios of climate change, this is worthwhile to mention that with increasing the GHGs level, the deviations of precipitation patterns grow up. Calibrating the GEV distribution over the historical and evaluation of different return period values, positive trends of precipitation statistics (mean, mode, and range of extreme values) are obviously detected.

Discussion

In this study, the patterns of precipitation distributions over Iran both in historical and future climate change scenarios have been analyzed. The results of trend analysis via Mann-Kendal test showed the same increasing trends of precipitation and GHGs level. So, the divergence methods were implemented to analyze the distance between rainfall distributions. The results showed some stations are more sensitive than the others and have more divergence from historical distributions. The extreme values of the recorded precipitation also analyzed using GEV distribution showed for a certain return period, the carbon emission level is directly correlated with the means and standard deviations of the extreme values. In conclusion, the results of this study showed that the increasing the level of emitted GHGs forces the statistical distribution to behaved more chaotic than the historical period. This makes the extreme values higher and more frequent than before. To further investigations, detection and attribution on Iran can be used to reflect the reality of national climate change and variabities. Also, considering the potential of climate change and climate classes, future (and probable) climate change patterns can be examined using the results of decreasing temperature and evaporation scales.

کلیدواژه‌ها [English]

  • Nonstationary of precipitation
  • climate change
  • Precipitation Extreme values
  • Energy Distance
  • Jensen&ndash
  • Shannon Divergence
  1. Abbasi, F., & Asmari, M. (2011). Forecasting and Assessment of Climate Change over Iran During Future Decades by Using MAGICC-SCENGEN Model. Journal of water and soil, 25(1), 70.
  2. Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., & Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water Resources Research, 45(10).
  3. Alijani, B., O’Brien, J., & Yarnal, B. (2008). Spatial analysis of precipitation intensity and concentration in Iran. Theoretical and Applied Climatology, 94(1), 107–124.
  4. Ayanlade, A., Radeny, M., Morton, J. F., & Muchaba, T. (2018). Rainfall variability and drought characteristics in two agro-climatic zones: An assessment of climate change challenges in Africa. Science of The Total Environment, 630, 728–737.
  5. Babaie, O., & Farajzadeh, M. (2002). Patterns Of Spatial And Temporal Variations Of Rainfall In Iran. Modarres Human Sciences, 6(4(Tome 27)), 51–70.
  6. Barlage, M. J., Richards, P. L., Sousounis, P. J., & Brenner, A. J. (2002). Impacts of Climate Change and Land Use Change on Runoff from a Great Lakes Watershed. Journal of Great Lakes Research, 28(4), 568–582.
  7. Bayat, B., Zahraie, B., Taghavi, F., & Nasseri, M. (2012). Evaluating the efficiency of spatial geostatistical methods for identifying the spatial patterns of precipitation: a case study of Namak lake watershed. Iranian Journal of Geophysics, 5(4), 89.
  8. Brunetti, M., Maugeri, M., & Nanni, T. (2001). Changes in total precipitation, rainy days and extreme events in northeastern Italy. International Journal of Climatology, 21(7), 861–871.
  9. Burt, T., Boardman, J., Foster, I., & Howden, N. (2016). More rain, less soil: long-term changes in rainfall intensity with climate change. Earth Surface Processes and Landforms, 41(4), 563–566.
  10. Change, C. (2007). Working Group I: The physical science basis. Projections of Future Changes in Climate:
  11. Cheng, L., AghaKouchak, A., Gilleland, E., & Katz, R. W. (2014). Non-stationary extreme value analysis in a changing climate. Climatic Change, 127(2), 353–369.
  12. , S. J., & Jayantha, O. (2014). Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events. Journal of Hydrologic Engineering, 19(3), 554–568.
  13. da Silva, V. de P. R., Belo Filho, A. F., Almeida, R. S. R., de Holanda, R. M., & da Cunha Campos, J. H. B. (2016). Shannon information entropy for assessing space–time variability of rainfall and streamflow in semiarid region. Science of The Total Environment, 544, 330–338.
  14. Fischer, E., & Knutti, R. (2015). Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change, 5.
  15. Fuglede, B., & Topsoe, F. (2004). Jensen-Shannon divergence and Hilbert space embedding. International Symposium OnInformation Theory, 2004. ISIT 2004. Proceedings., 31.
  16. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. John Wiley & Sons.
  17. Guhathakurta, P., Sreejith, O. P., & Menon, P. A. (2011). Impact of climate change on extreme rainfall events and flood risk in India. Journal of Earth System Science, 120(3), 359.
  18. Hailegeorgis, T. T., & Alfredsen, K. (2017). Analyses of extreme precipitation and runoff events including uncertainties and reliability in design and management of urban water infrastructure. Journal of Hydrology, 544, 290–305.
  19. Hejazizadeh, Z., Asakereh, H., & Sayadi, F. (2016). Climate Change and Space-Time Distribution of Precipitation across Iran. Geography, 14(50), 33.
  20. Jahanbakhsh, S., Abtahi, V., Ghorbani, M. A., Tadaiyoni, M., & Valaei, A. (2015). Temporal and Spatial Distribution of Rainfall in Tabriz County Using Hierarchical Cluster Analysis. Geographic Space, 15(50), 59–81.
  21. Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security – A review. Progress in Natural Science, 19(12), 1665–1674.
  22. Kendall, M. G. (1976). Rank correlation methods.
  23. Khudri, M. M., & Sadia, F. (2013). Determination of the best fit probability distribution for annual extreme precipitation in Bangladesh. European Journal of Scientific Research, 103(3), 391–404.
  24. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263.
  25. Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. Ann. Math. Statist., 22(1), 79–86.
  26. Mann, H. B., & Mann H B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245.
  27. Massey, F. J. (1951). The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46(253), 68–78.
  28. Medjahed, S. A., & Ouali, M. (2018). Svm-rfe-ed: A novel svm-rfe based on energy distance for gene selection and cancer diagnosis. Computación y Sistemas, 22(2).
  29. Mirhosseini, G., Srivastava, P., & Stefanova, L. (2013). The impact of climate change on rainfall Intensity–Duration–Frequency (IDF) curves in Alabama. Regional Environmental Change, 13(1), 25–33.
  30. Modarres, R., Ghadami, M., Naderi, S., & Naderi, M. (2018). Future extreme rainfall change projections in the north of Iran. Meteorological Applications, 25(1), 40–48.
  31. Mousavi, S. S., Fatemeh Karandish, & Tabari, H. (2016). Temporal and spatial variation of rainfall in Iran under climate change until 2100. Irrigation & Water Engineering, 7(25), 152.
  32. Neuper, M., & Ehret, U. (2019). Quantitative precipitation estimation with weather radar using a data-and information-based approach. Hydrology & Earth System Sciences, 23(9).
  33. Neville, S. E., & Wand, M. P. (2011). Generalised extreme value geoadditive model analysis via variational Bayes. Procedia Environmental Sciences, 3, 8–13.
  34. Nicótina, L., Alessi Celegon, E., Rinaldo, A., & Marani, M. (2008). On the impact of rainfall patterns on the hydrologic response. Water Resources Research, 44(12).
  35. Onyutha, C., Tabari, H., Rutkowska, A., Nyeko-Ogiramoi, P., & Willems, P. (2016). Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5. Journal of Hydro-Environment Research, 12, 31–45.
  36. Pahlavan, H. A., Zahraie, B., Nasseri, M., & Mahdipour Varnousfaderani, A. (2018). Improvement of multiple linear regression method for statistical downscaling of monthly precipitation. International Journal of Environmental Science and Technology, 15(9), 1897–1912.
  37. Parker, D., Folland, C., Scaife, A., Knight, J., Colman, A., Baines, P., & Dong, B. (2007). Decadal to multidecadal variability and the climate change background. Journal of Geophysical Research, 112.
  38. Rossi, M., Kirschbaum, D., Valigi, D., Mondini, A. C., & Guzzetti, F. (2017). Comparison of satellite rainfall estimates and rain gauge measurements in Italy, and impact on landslide modeling. Climate, 5(4), 90.
  39. Samuels, R., Harel, M., & Alpert, P. (2013). A new methodology for weighting high-resolution model simulations to project future rainfall in the Middle East. Climate Research, 57, 51–60.
  40. Serinaldi, F., Kilsby, C. G., & Lombardo, F. (2018). Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology. Advances in Water Resources, 111, 132–155.
  41. Shen, M., Chen, J., Zhuan, M., Chen, H., Xu, C.-Y., & Xiong, L. (2018). Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. Journal of Hydrology, 556, 10–24.
  42. Sun, F., Roderick, M. L., & Farquhar, G. D. (2018). Rainfall statistics, stationarity, and climate change. Proceedings of the National Academy of Sciences, 115(10), 2305 LP – 2310.
  43. Szekely, G. (2003). E-Statistics: The energy of statistical samples.
  44. Székely, G. J., & Rizzo, M. L. (2013). Energy statistics: A class of statistics based on distances. Journal of Statistical Planning and Inference, 143(8), 1249–1272.
  45. Taghavi, F., Nasseri, M., Bayat, B., Motevallian, S. S., & Azadifard, D. (2012). The Identification of Climatic Patterns of Iran Based on Spectral Analysis and Clustering of Precipitation and Temperature Extreme Values. Physical Geography Research Quarterly, 43(77), 109.
  46. Tarnavsky, E., Mulligan, M., & Husak, G. (2012). Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques - HYDROLOG SCI J, 57, 248–264.
  47. Thiesen, S., Darscheid, P., & Ehret, U. (2019). Identifying rainfall-runoff events in discharge time series: a data-driven method based on information theory. Hydrology & Earth System Sciences, 23(2).
  48. Thorarinsdottir, T. L., Gneiting, T., & Gissibl, N. (2013). Using proper divergence functions to evaluate climate models. SIAM/ASA Journal on Uncertainty Quantification, 1(1), 522–534.
  49. Vaghefi, S. A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H., & Abbaspour, K. C. (2019). The future of extreme climate in Iran. Scientific Reports, 9(1), 1464.
  50. Wi, S., Valdés, J. B., Steinschneider, S., & Kim, T.-W. (2016). Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima. Stochastic Environmental Research and Risk Assessment, 30(2), 583–606.
  51. Xavier, A., Blain, G., Morais, M., & Sobierajski, G. (2019). Selecting “the best” nonstationary Generalized Extreme Value (GEV) distribution: on the influence of different numbers of GEV-models Selecting the best GEV model. Bragantia, 606–621.
  52. Xie, Z.-H., Zeng, Y.-J., Xia, J., Qin, P.-H., Jia, B.-H., Zou, J., & Liu, S. (2017). Coupled modeling of land hydrology–regional climate including human carbon emission and water exploitation. Advances in Climate Change Research, 8(2), 68–79.
  53. Xu, W., Jiang, C., Yan, L., Li, L., & Liu, S. (2018). An Adaptive Metropolis-Hastings Optimization Algorithm of Bayesian Estimation in Non-Stationary Flood Frequency Analysis. Water Resources Management, 32(4), 1343–1366.
  54. Ye, H., Fetzer, E. J., Wong, S., Behrangi, A., Yang, D., & Lambrigtson, B. H. (2015). Increasing atmospheric water vapor and higher daily precipitation intensity over northern Eurasia. Geophysical Research Letters, 42(21), 9404–9410.
  55. Yu, P.-S., Yang, T.-C., & Chou, C.-C. (2002). Effects of Climate Change on Evapotranspiration from Paddy Fields in Southern Taiwan. Climatic Change, 54(1), 165–179.
  56. Zabihi, A., Solaimani, K., Shabani, M., & Abravsh, S. (2012). An Investigation of Annual Rainfall Spatial Distribution Using Geostatistical Methods (A Case Study: Qom Province). Physical Geography Research Quarterly, 43(78), 101.