بررسی روند تغییر و پیش نگری برف مرز ارتفاعات البرز استان مازندران در فصل زمستان، با استفاده از پردازش تصاویر ماهواره ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقلیم شناسی گرایش تغییر اقلیم دانشگاه زنجان و کارشناس تحقیقات هواشناسی، اداره کل هواشناسی مازندران، ساری

2 استادیار و عضو هیئت علمی ، پژوهشکده هواشناسی، تهران

3 کارشناس ارشد Rs، دانشگاه تبریز، تبریز

4 کارشناس ارشد ریاضی و رئیس اداره تحقیقات هواشناسی، اداره کل هواشناسی مازندران، ساری

چکیده

در سال‌های اخیر تغییرات زیادی در سطوح برفی به خاطر تغییر اقلیم در مناطق مختلف ایران اتفاق افتادهو مازندران از این قاعده مستثنی نبوده است.تخمین صحیح توزیع فضایی برف، برای برآورد تاب‌آوری و آسیب‌پذیری منطقه، برنامه‌ریزی‌های تأمین آب، مدیریت ریسک و بحران سیل، بسیار کاربردی و ضروری می باشد. فن‌آوری سنجش‌ازدور فرصت جدیدی را فراهم آورده تا بتوان محاسباتی گسترده تر، دقیق‌تر و آسان تر را نسبت به مدل‌های زمین‌آماری،جهت برآوردتغییرات برف انجام داد. در این پژوهش به بررسی تغییرات برف مرز استان مازندران در یک دوره 18 ساله از سال 1380 تا پایان 1397 پرداخته شد و تغییرات برف مرز استان در فصل زمستان شناسایی گردید. سپس با داده‌های اقلیمی شبیه سازی شده استاندارد سازمان زمین شناسی آمریکا که برای تغییر اقلیم 1472 تهیه گردید به پیش نگری روند تغییرات برف مرز استان در سال 1429برای فصل زمستان با استفاده از مدل شبکه عصبیMLP پرداخته شد و میزان تغییرات آن نسبت به زمان حال محاسبه گردید. سپس با استفاده روش منحنیROC دقت مدل برایاین فصل زمستان 50/98درصد ارزیابی گردید که مبین دقت بالای مدل شبکه عصبی برای شبیه سازی برف مرز استان می‌باشد.

نتایج مبین آن است که در سال 1429 ارتفاع برف مرز استان در فصل زمستان حدود 800 متر نسبت به شرایط حاضر به سمت ارتفاعات بالاتر جابجا خواهد شد و از ارتفاع حدود 2750 متر فعلی به 3560 متر خواهد رسید و این شرایط می تواند چالش های عدیده ای در منابع آبی استان بوجود آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the trend of changes and snow prediction in Alborz heights of Mazandaran province in winter, using satellite image processing

نویسندگان [English]

  • Rahim Yousefizadeh 1
  • Saviz Sehatkashani 2
  • Khalil Gholamnia 3
  • Ali Maleki 4
  • Golzar Einali 3
1 expert of research group.mazandaran meteorological office.sari.iran
2 Tehran, Shahid Hemmat Highway (West), Shahid Kharazi Highway, Research Boulevard, Meteorological Research Institute
3 Tabriz University
4 Head of the Department of Applied Meteorology, Mazandaran Meteorological Organization, Sari, Iran
چکیده [English]

According to meteorologists studying climate and atmospheric change , snow monitoring is essential; Because the surface expansion and physical properties of snow are affected by daily changes and even long-term climatic changes and sometimes affect.Snow storage in mountainous basins is the main source of surface water currents in spring. Accumulation of snow and gradual melting of snow masses, provides favorable conditions for the infiltration and feeding of groundwater and the creation of permanent and seasonal rivers in catchments. Iran is a mountainous country and is also located in arid and semi-arid territory and most of its rainfall falls in the cold season, which is snow in the mountains. Mountains hold water reserves in the form of snow for other times of the year. The Alborz mountain range, as a water dividing line on its northern and southern slopes, manages water resources. Important rivers that flow in the southern slopes of Alborz make life possible in the interior of Alborz. As the temperature decreases, this mountain range changes the type of precipitation to snow on its slopes and maintains the snow reserves as a safe bed during the dry days of the year. Climate change and global warming are causing changes in the snow border area in the mountains, resulting in drought. Border snow fluctuations are more affected by temperature changes than annual rainfall, because if there is no decrease in rainfall, increasing the temperature will increase the height of the border snow.According to meteorologists studying climate and atmospheric change, snow monitoring is essential; Because the surface expansion and physical properties of snow are affected by daily changes and even long-term climatic changes and sometimes affect. In recent years, climate change has caused temporal and spatial changes in the amount and type of precipitation in Mazandaran province, which in turn adds to the importance of this issue. Accurate estimation of cover level is considered as one of the central and basic operations in the field of water resources management, especially in areas where snowfall has a large share in precipitation. Snow storage in mountainous basins is the main source of surface water currents in spring. Accumulation of snow and gradual melting of snow masses provide favorable conditions for the infiltration and feeding of groundwater and the creation of permanent and seasonal rivers in catchments. According to studies, about 60% of the country's surface water and 57% of groundwater is fed by melting snow.

The deep correlation between the height of the border snow at the end of the cold season predicts the occurrence or non-occurrence of drought for the following year In recent years , many changes in snow levels have occurred due to climate change in different parts of Iran and Mazandaran is no exception to this rule. Accurate estimation of snow spatial distribution is very useful and necessary for estimating the resilience and vulnerability of the area , water supply planning, risk management and flood crisis. Remote sensing technology provides a new opportunity to perform broader , more accurate and easier calculations than geostatistical models to estimate snow changes. In this study, the snow changes in the border of Mazandaran province in an 18-year period from 2001 to the end of 2018 were studied and the snow changes in the border of the province in winter were identified. Then , with the climatic data of the standard of the American Geological Survey, which was prepared for climate change in 2093, the trend of snow changes in the province border in 2050 for the winter was predicted using the MLP neural network model and the amount of changes compared to the present time was calculated. Took. Then, using the ROC curve method , the accuracy of the model for this chapter was evaluated 98.50%, which indicates the high accuracy of the neural network model to simulate the snow of the province border.

The results show that in 2050, the height of snow in the border of the province in winter will be about 800 meters compared to the current conditions will move to higher altitudes and from the current height of about 2750 meters will reach 3560 meters and these conditions can be many challenges. Created in the province's water resources.

کلیدواژه‌ها [English]

  • Remote Sensing
  • Satellite image processing
  • Border Snow
  • Neural Network
  • Mazandaran Province
  1. منابع

    1. Adam, J. C., Hamlet, A. F., & Lettenmaier, D. P. (2009). Implications of global climate change for snowmelt hydrology in the twenty‐first century. Hydrological Processes: An International Journal, 23(7), 962-972.
    2. Aghelpour, P., Guan, Y., Bahrami-Pichaghchi, H., Mohammadi, B., Kisi, O., & Zhang, D. (2020). Using the MODIS sensor for snow cover modeling and the assessment of drought effects on snow cover in a mountainous area. Remote Sensing, 12(20), 3437.
    3. Ansari, H. R., Zarei, M. J., Sabbaghi, S., & Keshavarz, P. (2018). A new comprehensive model for relative viscosity of various nanofluids using feed-forward back-propagation MLP neural networks. International Communications in Heat and Mass Transfer, 91, 158-164.
    4. Arber, S., Hunter, J. J., Ross Jr, J., Hongo, M., Sansig, G., Borg, J., ... & Caroni, P. (1997). MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell, 88(3), 393-403.
    5. Archer, D.R.Bailey, J. O. Barrett, E.C. and Greenhill, D. (1994), “The potential of satellite remote sensing of snow over Great Britain in relation to cloud cover”, Nordic Hydrology, 25.
    6. Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303-309.
    7. Bashir, F. Rasul, G. (2010), “Estimation of average snow cover over northern Pakistan”, Pakistan Journal of Meteorology, 7(13), 63-69.
    8. Book: Pinkus, A. (1999). Approximation theory of the MLP model. Acta Numerica 1999: Volume 8, 8, 143-195.
    9. Broxton, P. D., Harpold, A. A., Biederman, J. A., Troch, P. A., Molotch, N. P., & Brooks, P. D. (2015). Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed‐conifer forests. Ecohydrology, 8(6), 1073-1094.
    10. Chen, W., Shirzadi, A., Shahabi, H., Ahmad, B. B., Zhang, S., Hong, H., & Zhang, N. (2017). A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatics, Natural Hazards and Risk, 8(2), 1955-1977. doi:10.1080/19475705.2017.1401560
    11. Dadashi M,Mokhtari Mh,Tiba Ar,Zerang n,Hasanabadi A,(2014),” Calculation of snow level using Modis measuring images (Case study of Tehran province)”, The first national conference on the application of advanced models of spatial analysis (remote sensing and GIS) in land management, Yazd Branch of Azad University,march(2015)
    12. Dahe, Q., Shiyin, L., & Peiji, L. (2006). Snow cover distribution, variability, and response to climate change in western China. Journal of climate, 19(9), 1820-1833.
    13. Dariane, A.B. Khoramian, A. Santi, E. (2017), “Investigating spatiotemporal snow cover variability via cloud-free MODIS snow cover product in Central Alborz Region”, Remote sensing of environment, 202, 152-165.
    14. Egan, J. P., & Egan, J. P. (1975). Signal detection theory and ROC-analysis. Academic press.
    15. Ezzati, M,. Shokouhi, A,. and Nouri, M,( 2015), Investigating the effect of climate change on snow cover Case study: Taleghan catchment, 5th Regional Conference on Climate Change, Tehran
    16. Fatahi, E., Moghimi, Sh. (2017). The effect of climate change on snow trend in northwestern Iran,Journal of Applied Research in Geographical Sciences,,54, 46-63.
    17. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
    18. Gao, J., & Liu, Y. (2001). Applications of remote sensing, GIS and GPS in glaciology: a review. Progress in Physical Geography, 25(4), 520-540.
    19. Garen, D. and Marks, D. (2005). “Spatially distributed energy balance snowmelt modeling in a mountainous river basin:estimation of meteorological inputs and verification of model results”, Journal of Hydrology, 315:126-153.
    20. Garg, G., Kumar, D., Sonker, Y., & Garg, R. (2021). A Hybrid MLP-SVM Model for Classification using Spatial-Spectral Features on Hyper-Spectral Images. arXiv preprint arXiv:2101.00214.
    21. Gholamnia, K., Gudiyangada Nachappa, T., Ghorbanzadeh, O., & Blaschke, T. (2020). Comparisons of diverse machine learning approaches for wildfire susceptibility mapping. Symmetry, 12(4), 604.
    22. Ghorbanzade,H., Sedeghi, H,. Saghafian, B,. Porhemat, J,.(2010),Investigation of the effect of climate change on the distribution of runoff flow due to snowmelt in the Karun catchment,Iran-Watershed Management Science & Engineering,vol 3, no 9,45-50
    23. Goodinson, B.E. Rango, A. Walker, A.E. (2000), “Snow and Ice, Remote Sensing inHydrology and Water Management”, Springer Pub, Berlin, 539- 540.
    24. Gray, D.M. Zhaoi, L. (1998). “EstimatingSnowmelt Infiltration into Frozen Soils, International Conference on SnowHydrology” ,US Army Corps of Engineers, Cold Regions Research & EngineeringLaboratory, 13(12-13):1827 1842.
    25. Groisman, P. Y., Karl, T. R., & Knight, R. W. (1994). Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263(5144), 198-200.
    26. Immerzeel WW, Droogers P, De Jong SM, Bierkens MFP. 2009. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 113(1): 40–49.
    27. Immerzeel WW. 2008. Historical trends and future predictions of climate variability in the Brahmaputra basin. Int. J. Climatol. 28: 243–254.
    28. Jafari Gh (2016),” The method of estimating the height of the snowborder line of Iran's permanent and comparing it with the Write method”, Geography and environmental planning, Volume 24, No4,winter 2016,pp99-118
    29. Jain SK, Goswami A, Saraf AK. 2009. Role of elevation and aspect in snow distribution in western Himalaya. Water Resour. Manage. 23(1): 71–83.
    30. Johansson, B. Caves, R. Ferguson, R. Turpin, O. (2001). “Using remote sensing data to update the simulated snow pack of the HBV runoff model”. IAHS PUBLICATION, 595-597.
    31. Journal:Bashir, F. Ghulam, R. )2010(, “Estimation ofAverage Snow Cover over NorthernPakistan”, Pakistan Journal of Meteorology,7(13): 63-69.
    32. Kang, D., Lee, K., & Kim, E. J. (2021). Improving cold-region streamflow estimation by winter precipitation adjustment using passive microwave snow remote sensing datasets. Environmental Research Letters, 16(4), 044055.
    33. Karbou, Fatima, Gaëlle Veyssière, Cécile Coleou, Anne Dufour, Isabelle Gouttevin, Philippe Durand, Simon Gascoin, and Manuel Grizonnet. "Monitoring Wet Snow Over an Alpine Region Using Sentinel-1 Observations." Remote Sensing 13, no. 3 (2021): 381.
    34. Khalsa S., VB.Azien. (2008). “Variability incenteral asia seasonal snow cover during theMODIS period of record”, Geophys Res Abstr 10:1-2,EGU2008-A-0443
    35. Li, C., Su, F., Yang, D., Tong, K., Meng, F., & Kan, B. (2018). Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014. International Journal of Climatology, 38(2), 708-728.
    36. Lindsay, CH. Zhu, J. Miller, A.E. Wilson, T.L. (2015). “Deriving Snow Cover Metrics for Alaska from MODIS”,Remote sensing, 7: 12961-12985.
    37. Lopez, P. Sirguey, P. Arnaud, Y. Pouyaud, B. Chevallier, P. (2008), “Snow cover monitoring in the Northern Patagonia Icefield using MODIS satellite images (2000–2006)”, Global and Planetary Change, 61(3-4), 103-116.
    38. Marchane, A. Jarlan, L. Hanich, L. Boudhar,A. Gascoin, A. Tavernier, A. Filali, N. LePage, M. Hagolle, O. Berjamy, B. (2015),“Assessment of daily MODIS snow coverproducts to monitor snow coverdynamics over the Moroccan Atlasmountain range”, Remote Sensing ofEnvironment(2015),http://dx.doi.org/10.1016/j.rse.2015.01.002.
    39. Massaoudi, M., Refaat, S. S., Chihi, I., Trabelsi, M., Oueslati, F. S., & Abu-Rub, H. (2021). A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting. Energy, 214, 118874.
    40. Mellit, A., & Kalogirou, S. (2021). Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions. Renewable and Sustainable Energy Reviews, 143, 110889.
    41. Mir mousavi H ,Saboor L,(2012) ,”Monitoring snow cover changes using MODIS sensor images in the northwestern region of Iran”, Journal of Geography and Development,No35,Summer 2014,pp 181-199
    42. Miryaghoubzadeh M H, Ghanbarpoor M R, (2010),” Investigation of the application of snow cover maps obtained from MODIS satellite images in snowmelt runoff modeling (Case study: Karaj dam watershed)”, Journal of Earth Sciences, Summer 2010,19th year,No76,pp141
    43. Phong, Tran Van, Binh Thai Pham, Phan Trong Trinh, Hai‐Bang Ly, Quoc Hung Vu, Lanh Si Ho, Hiep Van Le, Lai Hop Phong, Mohammadtaghi Avand, and Indra Prakash. "Groundwater Potential Mapping Using GIS‐Based Hybrid Artificial Intelligence Methods." Groundwater (2021).
    44. Raispour k.(2018),”Monitoring changes in Iran's snow cover using NDSI algorithm in TERRA / MODIS images”,The 2nd national conference of climatology on iran,may 9th 2018
    45. Rittger K, Painter TH, Dozier J. 2013. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 51: 367–380.
    46. Ruisanchez, I., Jimenez-Carvelo, A. M., & Callao, M. P. (2021). ROC curves for the optimization of one-class model parameters. A case study: Authenticating extra virgin olive oil from a Catalan protected designation of origin. Talanta, 222, 121564.
    47. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293.
    48. Tang Z, Wang J, Li H, Yan L. 2013. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectra-radiometer fractional snow
    49. Tang, Z., Wang, X., Wang, J., Wang, X., Li, H., & Jiang, Z. (2017). Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001–2015. Remote Sensing, 9(10), 1045.
    50. Tsai, Y. L. S., Dietz, A., Oppelt, N., & Kuenzer, C. (2019). Remote sensing of snow cover using spaceborne SAR: A review. Remote Sensing, 11(12), 1456.
    51. Wang, J., & Li, S. (2006). Effect of climatic change on snowmelt runoffs in mountainous regions of inland rivers in Northwestern China. Science in China Series D: Earth Sciences, 49(8), 881-888.
    52. Yang J, Jiang L, Ménard CB, Luojus K, Lemmetyinen J, Pulliainen J. (2015). Evaluation of snow products over the Tibetan Plateau. Hydrol. Process. 29(15): 3427–3460.
    53. Yilmaz, I., & Kaynar, O. (2011). Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert systems with applications, 38(5), 5958-5966.
    54. Zhang G, Xie H, Yao T, Liang T, Kang S. 2012. Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010). Water Resour. Res. 48(10): W10529.
    55. Zhang, T., Han, L., Chen, W., & Shahabi, H. (2018). Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling. Entropy, 20(11), 884.
    56. Zhou, H.Aizen, E. and Aizen, V. (2013). “Deriving long term snow cover extent dataset from AVHRR and MODISdata: Central Asia case study”, Remote Sensing of Environment, 136: 146-162.