بررسی روند رخدادهای حدی دما بر اساس گزارش پنجم IPCC (مطالعه موردی: استان خراسان جنوبی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای هواشناسی کشاورزی، دانشگاه فردوسی مشهد، ایران

2 استاد هواشناسی، دانشگاه فردوسی مشهد، ایران

3 استاد مهندسی آب، دانشگاه بیرجند، ایران

4 استادیار گروه علوم باغبانی، دانشگاه فردوسی مشهد، ایران

چکیده

در سال‌های اخیر توجه به تغییرات اقلیمی به علت پیامدهای اقتصادی، اجتماعی و خسارات مالی مربوط به رویدادهای حدی جوی، اهمیت زیادی پیداکرده است. مطالعه مقادیر حدی در برنامه ریزیها و سیاستگذاریهای بخش کشاورزی و مدیریت منابع آب اهمیت بسیار دارد. لذا در این پژوهش برای مطالعه اثرات تغییرات اقلیمی بر روند نمایه‌های حدی دما، از داده‌های روزانه دمای 17 ایستگاه هواشناسی استان خراسان جنوبی در دوره آماری 2016-1992 و بر اساس مدل اقلیمی MIROC5 و روش ریزمقیاس نمایی دلتا بر اساس گزارش پنجم IPCC داده‌های دوره میانی 2050-2017 شبیه‌سازی شدند. سپس16 نمایه حدی دما که توسط گروه کارشناسی ETCCDMI تعریف شده است با استفاده ازبسته نرم افزاری RClimdex در محیط نرم افزار برنامه نویسی R محاسبه شدند. از آزمون های ناپارامتری من کندال و پارامتری رگرسیون خطی برای بررسی روند نمایه ها استفاده شد و احتمال وقوع کلیه نمایه‌ها در سطوح احتمالاتی 8/0، 96/0 و 995/0 محاسبه و نقشه های پهنه‌بندی احتمال وقوع نمایه ها نیز با استفاده از روش زمین‌آماری کریجینگ معمولی ترسم شدند. نتایج نشان داد که نمایه‌های حدی سرد CSDI، IDO و TXn در اکثر ایستگاه‌ها در سناریوهای RCP4.5 و RCP8.5 در حال افزایش و نمایه‌های FDO، TN10P و TX10P در اکثر ایستگاه‌ها در حال کاهش هستند. نمایه‌های حدی گرم روند افزایشی در اکثر ایستگاه‌ها در سناریوهای RCP4.5 و RCP8.5 دارند و سناریوهای آینده نشان می‌دهد که احتمال خطر افزایش نمایه‌های حدی گرم علاوه بر غرب استان به سمت جنوب و مرکز استان و احتمال خطر کاهش نمایه‌های حدی سرد از شمال به شمال شرق استان کشیده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Trend of extreme Temperature Events Based on the Fifth IPCC Report (Case Study: South Khorasan Province)

نویسندگان [English]

  • Elham Abedini 1
  • Mohammad Mousavi bayegi 2
  • Abbas Khashei siuki 3
  • Yahya Selahvarzi 4
1 ferdowsi university of mashhad
2 College of Agriculture ,Ferdowsi University of Mashhad
3 Associate Professor Department of Water Engineering University of Birjand
4 Assistant Professor of Horticultural Sciences, Ferdowsi University of Mashhad, Iran
چکیده [English]

Introduction

The main characteristics of climate change are the changes in mean climate parameters and the increase in the frequency of climatic extreme indices (WMO, 1998). Climatic extreme indices are phenomena that are scarce in terms of frequency and intensity, which disturb the equilibrium of climate systems. A joint project was undertaken within the World Meteorological Organization's activities between the CCL, CLIVAR and WCRP and provided specific relationships to calculate various indices resulting in the production of many softwares such as Climdex and Climdex (Zhang, 2007). Halimato et al. (2017) investigated the trends of temperature and precipitation changes in the Segou and Bamako in Mali. The results in Segou showed that the number of cold days and cold nights significantly reduced and the number of hot days and hot nights increased.

One of the common characteristics of environmental factors is their continuous spatial variations. Therefore, in order to quantitatively describe the distribution patterns of environmental variables, the geographical location of the observations must be taken into account at the same time, in addition to the value specified (Buma, 1996). Thereupon, in this study mid-term data of 2017-2050 were simulated in order to investigate the influence of climate change on the trend of temperature extreme indices by means of MIROC5 climate model and Delta microscale method based on the fifth IPCC report using daily temperature data in the statistical period of 1992-2016 at 17 stations in South Khorasan Province. Afterward, 16 temperature extreme indices, which were defined by ETCCDMI expert group, were calculated using RClimdex software in R programming language environment. The non-parametric Mann-Kendall test and linear regression were applied to trend analysis process, the trend of all indices were calculated at probability levels of 0.8, 0.96, and 0.995, and finally by using the conventional Kriging geostatistical method, zoning maps were drawn.



Materials and methods

South Khorasan Province in Iran has an area of 151,193 km2 and is located between the latitude of 30° 31' to 34° 53' N, and the longitude of 57° 03' to 60° 60' E. In this study, daily temperature data of seventeen South Khorasan meteorological stations were used during the period of 1992-1996 with different climatic conditions. The first data were controlled by RClimdex software and then the 16 temperature extreme indices defined by the ETCCDMI Expert Group were calculated using RClimdex software in the programming language environment of R on annual and monthly bases. The Mann-Kendall test and Statistical method of linear regression were utilized to examine the trends of indices. Afterwards, the probability of occurrence was calculated at 0.8, 0.96, and 0.995 probability levels to be respectively equal to 5, 25, and 200 year return period after fitting to the theoretical distributions using SMADA software, sequentially, the likelihood maps of probability were plotted. From the existing climate models, the Miroc5 model was selected and the results of previous CMIP5 data show acceptable performance of this model for simulating atmosphere, ocean, glaciers, chemistry and aerosols of the Earth and atmosphere, giving acceptable results for arid and desert areas (Dasht Bozorgi, 2015 and Ullah, 2018). In addition, from the four scenarios introduced by AR5, two scenarios namely RCP4.5 and RCP8.5 were selected for the period of 2006-2050.

Results and discussion

The FDO index is increasing in Aryanshahr, Boshrooyeh, Khoor, Deyhook, Eshghabad, Tabas, Madan Parvadeh, Nehbandan, and Birjand, while most of these stations were shown to be reduced by RCP4.5 and RCP8.5 scenarios for this index. The IDO index is either rising or in normal conditions at most stations, while according to the RCP4.5 scenario there is only a sudden decrease at Fathabad station .TX10P has a sudden increase in the current conditions at Eresk, Deyhook and Ferdows stations, but based on the RCP4.5 and RCP8.5 scenarios there is a decreasing trend at all stations. The TXn index at Eresk, Boshrooyeh, Birjand, and Zohan declined abruptly. SU25 index has a decreasing trend at Fathabad station and is increasing at all the other stations based on RCP4.5 and RCP8.5 scenarios. It is also increasing at the probability level of 0.995 in the south of province. At all three probability levels, the TN90P is rising at RC4.5 in the east of the province and RCP8.5 in the south and west of the province. TNx is also increasing at all three probability levels in the northwest and west of the province. The TR20 index is also rising at RCP4.5, RCP8.5 and TX90P in all three in the south of the province. The TXx exponentially increases in northwest of the province for both RCP4.5 and RCP8.5 scenarios. The WSDI index is increasing at RCP4.5 in the south of the province and at 0.995 level in the east.

Conclusion

Examination of temperature indices, including cold (TX10P, TN10P) and hot (TX90P and TN90P) period indices in different scenarios, shows that cold indices tend to decrease and hot indices tend to increase in most parts of the province. The number of cold nights is decreasing based on the RCP4.5 and RCP8.5 scenarios in the north and northeast of the province, indicating that the future needs of trees in these areas will not be met. Based on the RCP8.5 scenario, the TN90P index at all stations has an increasing trend, which has a significant negative impact on summer crops and horticulture crops in the province (Bokwa et al. 2014). The duration of the CSDI cold index has declined throughout the province and the number of frost days is also declining in the two RCP4.5 and RCP8.5 scenarios for the next 50 years. On the other hand, some hot indices such as the TR20 index are spread in the north and northwest of the province. The SU25 extends from west and northwest to the center and south of the province. Future scenarios show the likelihood of an increase in hot extreme indices in addition to the west of the province to the south and center and the likelihood of danger of cold extreme indices extending from north to northeast of the province.

کلیدواژه‌ها [English]

  • Extreme Climate Events
  • Temperature indicies
  • Trend
  • RCP
  • Southern Khorasan
  1. منابع

    1. Abedini, E., Mousavi Baygi, M., Khashei Siuki, A & Selahvarzi, Y. (2020). Investigating the trend of Extreme Climatic Events in South Khorasan Province.Agrometeorology Journal.No.7(2). pp.55-66. (in Persian with English abstract)
    2. Adhikary, P., Chandrasekharan, H., Chakraborty, D & Kamble, K. (2010). Assessment of groundwater pollution in West Delhi, India using geostatistical approach. Environ Monit Assess. No. 167. pp.599–615.
    3. Alijani, B & Farajzade, H. (2015). Analysis of Extreme temperature indices in northern Iran. Journal of Geography and Planning.No.19(52). pp.229-256. (in Persian with English abstract).
    4. A.2008. Principles of Applied Hydrology. Imam Reza University Press, Mashhad.
    5. An, D., Du, Y., Berndtsson, R., Berndtsson, Z., Zhang, L & Yuan, F. (2019). Evidence of climate shift for temperature and precipitation extremes across Gansu Province in China. Theoretical and Applied Climatology. No. 139. pp.1137–1149.
    6. Arnell, N.W & Gosling, S.N. (2016). The impacts of climate change on river flood risk at the global scale. Climate Change.No. 134(3). pp.387–401.
    7. Alexander, L.V & Arblaster, J.M. (2017). Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather and Climate Extremes.No.15. pp.34–56.
    8. Barker, N. C & Huang, H. P. (2014). A Comparative Study of Precipitation and Evaporation between CMIP3 and CMIP5 Climate Model Ensembles in Semiarid Regions. Journal of Climate.No. 27. pp.3731-3749.
    9. Bassu, S., Brisson, N., Durand, J. L., Boote, K., Lizaso, J., Jones, J. W & Basso, B. (2014). How do various maize crop models vary in their responses to climate change factors? Global Change Biology. No.20(7). pp.2301-2320.
    10. Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A., Frei, C., Goyette, S & Woth, K. (2007). Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change. No.8(1). pp. 71-95.
    11. Bouma, J., Booltink, H. W. G & Finke, P. A. (1996). Use of survey data for modeling solute transport in the Vaduz. Jornal of Environ. Quality. No.25. pp. 519-526.
    12. Choi G., Collins D., Ren G., Trewin B., Baldi M., Fukuda Y., Afzaal M., Pianmana T., Gomboluudev P., Huong P.T.T., Lias N., Kwon W.T., Boo K.O., Cha Y.M & Zhou, Y. (2009). Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. International Journal of Climatology. No.29. pp. 1906–1925.
    13. Christidis N., Stott P.A., Brown S., Hegerl, G.C & Caesar, J. (2005). Detection of changes in temperature extremes during the second half of the 20th Century. Geophysical Research Letters. doi: 10.1029/2005GL023885.
    14. Collins, M., Knutti, R., Arblaster, J. M., Dufresne, J. L., Fichefet, T., Friedlingstein, P & Wehner, M. (2013). Long-term climate change: Projections, commitments and irreversibility. Working Group, I Contribution to the IPCC 5th Assessment Report.1029-1136.
    15. Dasht Bozorgi, A., Alijani, B., Jafarpour, Z & Shakiba, A.R. (2015). Simulation of Khuzestan province temperature limit indices based on RCP scenarios. Journal of Geography and Environmental Hazards. No.16. pp. 123-105. (in Persian with English abstract)
    16. Department of Meteorology of South Khorasan Province. (2016). Long-term statistics and information of meteorological stations of South Khorasan. Birjand. (in Persian with English abstract)
    17. Deryng, D., Conway, D., Ramankutty, N., Price, J and Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters. No.9(3). pp034011.
    18. Giasabadi farahani, F., Khoshakhlagh, F., Shamsipoor, A.A., Azizi, G & Fatahi, E. (2018). Investigation and analysis of changes within decades of trend and spatial pattern of precipitation Annual and Seasonal (Case Study: Western Midlands of Iran). Journal of Applied Research in Geographical Sciences.No.18(48). pp.59-78. (in Persian with English abstract)
    19. Hajrasuliha, S., Baniabassi, N., Meohey, J & Nielson, D. R. (1980). Spatial variability of soil sampling for salinity studies in Southwest Iran. Irrigation Science.No.)1). pp.197-208.
    20. (2014). Climate Change2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva.Switzerland.
    21. Kaidani, M & Delbari, M. (2011). Soil Salinity Zoning and Salinity Risk Assessment in Mid-Kenyan Area (Sistan) Using Geostatistical Methods. Journal of Irrigation Science and Engineering. No. 35(1). pp. 59-49. (in Persian with English abstract)
    22. Kouzegaran, S & Mousavi Baygi, M. (2015). Investigation of Meteorological Extreme Events in the North-East of Iran. Journal of Water and Soil. No.29 (3). pp.750-764. (in Persian with English abstract).
    23. Karl, T.R & Trenberth, K.E. (2003). Modern global climate change. Science.No.(302). pp.1719–1723.
    24. Kharin, V. V., Zwiers, F. W., Zhang, X & Wehner, M. (2013). Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change. No.119(2). pp. 345-357.
    25. Krause, P., Boyle D. P & Base, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences. No.5. pp. 89–97.
    26. Lee, J. J., Liu, C. W., Jang, C. S & Liang, C. P. (2008) Zonal management of multi-purpose use of water from arsenic-affected aquifers by using a multi-variable indicator kriging approach. Journal of Hydrology. No. (359). pp. 260– 273.
    27. Mahmoudi, P., Khosravi, M., Masoudian, S. A & Alijani, B. (2016). Investigating the trend of changes in the days Along with Iran's pervasive and semi-pervasive glaciers. geography and planning.No.54. pp.304-326. (in Persian with English abstract)
    28. Z., Marufi s., & Abbasi, H. (2009). Detection the trends of the flow rate and its relationships with meteorological parameters in Yalfan Hamedan basin using Mann- Kendall test. Third Water Resources Management. (in Persian)
    29. McKinnon, K.A., Rhines, A., Tingley, T. P & Huybers, P. (2016). The changing shape of Northern hemisphere summer temperature distributions. Journal of Geophysical Research: Atmospheres. No .121(15). pp.8849–8868.
    30. Mohammadi, H & Taghavi, F. (2005). The trend of extreme temperature and precipitation indices in Tehran. Journal of Geographical Reasearch. 53(2):151-172. (in Persian with English abstract).
    31. Nandintsetseg, B., Greene, J. S & Goulden, C. E. (2007). Trends in extreme daily precipitation and temperature near Lake Hövsgöl, Mongolia. International Journal of Climatology. No .27(3). pp. 341-347.
    32. Nash, J. E & J.V. Sutcliffe. 1970.River flow forecasting through conceptual models, Part I a discussion of principles. Journal of Hydrology. No.10(3). pp. 282–290.
    33. Ozturk, D & Kilic, F. (2016). Geostatistical Approach for Spatial Interpolation of Meteorological Data. Annals of the Brazilian Academy of Sciences. No.88(4). pp. 2121-2136.
    34. Rezaei Banafshe M., Sarafruze F& Jalali, T. (2012). The Study of Daily Extreme Temperature and Precipitation in Urmia Lake Basin. Journal of Geography and Planning. 16(28):42-74. (in Persian with English abstract).
    35. Shahid, S. (2011). Trends in extreme rainfall events of Bangladesh. Theoretical Applied Climatology. 104: 489-499.
    36. Sharma, A & Goyal, M.K. (2020). Assessment of the changes in precipitation and temperature in Teesta River Basin in Indian Himalayan Region under climate change. Atmospheric Research.No 231. pp.104670.
    37. Sneyers, R.1990.On the statistical analysis of series of observation. World Meteorological Organization (WMO). Technical Note. No.143.Geneva: pp .192.
    38. Soltani, M., Laux, P., Kunstmann, H., Stan, K., Sohrabi, M.M., Molanejad, M., Sabziparvar, A.A., Ranjbar, A., SaadatAbadi, A., Ranjbar, F., Rousta, I., Zawar-Reza, P., hoshakhlagh, F., Soltanzadeh, I., Babu, C. A &Azizi, G. H. (2016). Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoretical and Applied Climatology. No.126. pp.775-795.
    39. Trenberth, K.E. (2011). Changes in precipitation with climate change. Climate Research.No.(47). pp. 123–138.
    40. Ullah, A., Salehnia, N., Kolsoumi, S., Ashfagh A & Khaliq, T. (2018). Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through Genetic Algorithm in Punjab, Pakistan. Ecological Indicators. No.90. pp.569–576.
    41. World Meteorological Organization (WMO). (1998). The Global Climate System Review. No. 856.
    42. Zhang, X. (2007). ETCCDI/CRD climate change indices software, Jan 1, 2007, Climate Research Division of Environment Canada,cccma.seos.uvic.ca/ETCCDMI /software .shtml.
    43. Zao, Y., Xu, X., Huang, W., Wang, Y., Xu, Y., Chen, H & Kang, Z.2019. Trends in observed mean and extreme precipitation within the Yellow River Basin, China. Theoretical and Applied Climatology. No.136. pp.1387-1396.