پایش خشکسالی هواشناسی آینده با استفاده از مدل تغییر اقلیم سری CMIP5 و زنجیره مارکوف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی آب، مجتمع آموزش عالی میناب، دانشگاه هرمزگان

2 استاد دانشکده محیط زیست، دانشگاه تهران

چکیده

خشکسالی یکی از گسترده‌ترین بلایای فضایی است که جوامع با آن روبرو هستند. با وجود فوریت برای تعیین استراتژی‌های کاهش، تحقیقات کمی در مورد خشکسالی های مربوط به تغییرات آب و هوایی انجام شده است. هدف از این تحقیق 1) بررسی وضعیت خشکسالی با استفاده از مدل های جهانی(GCM) ریزمقیاس شده آماری برای شرایط فعلی؛ 2) ارزیابی و احتمال خصوصیات خشکسالی‌های حال و آینده در منطقه تحت مسیرهای غلظت نماینده (PRC) 5/4 و 5/8 است. از مدل MPI-ESM-MR که جز مدل‌های جهانی تغییر اقلیم مدل‌های (CMIP5) استفاده شد. شاخص بارش استاندارد (SPI) و زنجیره مارکوف برای خشکسالی ها زمان پایه 1982–2005 و زمان آینده 2016-2045 محاسبه شد. نتایج نشان داد که منطقه خشکسالی شدیدتری را در آینده نسبت به دوره های تاریخی مبتنی بر SPI تحت هر دو 2 سناریو RCP تجربه می‌کند. با افزایش زمان‌بندی SPI ، مدت زمان تمام کلاس های خشکسالی تحت سناریوهای PRC در آینده کاهش می‌یابد. مقایسه نتایج احتمال زنجیره مارکوف برای دوره پایه و آینده نشان داد احتمال کلاس مرطوب تا خشک برای فصول بهار، تابستان و زمستان برای دوره پایه و آینده طبق سناریو 5/4 و 5/8 به ترتیب برابر با 57 ، 60 و 60؛ برای تابستان برابر 8/77 ، 67 و 50 و برای زمستان به ترتیب 66.7 ، 75 و 75 درصد است. برای پاییز در دوره پایه از حالت مرطوب به حالت نرمال با احتمال 89٪، درصد کلاس خشک به عادی دوره آینده طبق سناریوهای 5/4 و 5/8 به ترتیب برابر با 89 و 90٪ است. بررسی احتمال خشکسالی با زنجیره مارکوف نشان داد هر طبقه تمایل به انتقال طبقه نزدیک خود دارد. طبق هردو سناریو بیشترین احتمال مربوط به طبقه نرمال است. انجام برنامه-ریزی‌ها و مدیرت موفق، نیاز به شناخت صحیح پدیده خشکسالی و علت‌های پیدایش آن دارد. بنابراین مسئله تغییر اقلیم نیازمند توجه بیشتری است.

کلیدواژه‌ها


عنوان مقاله [English]

Future meteorological drought monitoring using CMIP5 series climate change model and Markov chain

نویسندگان [English]

  • Maryam Heydarzadeh 1
  • Ahmad Nohegar 2
1 Assistant Professor water engineering, Minab higher Education center, University of Hormozgan
2 Professor, Faculty of Environmental, University of Tehran
چکیده [English]

Introduction

Droughts are one of the most spatially extensive disasters that are faced by societies. Despite the urgency to define mitigation strategies, little research has been done regarding droughts related to climate change. The challenges are due to the complexity of droughts and to future precipitation uncertainty from Global Climate Models (GCMs). It is well-known that climate change will have more impact on developing countries. Among the most significant impacts of droughts to the environment are the acceleration of desertification processes, the increase in the risk of forest fires, the reduction of the availability of water resources for domestic and industrial use and the damage done to animals and vegetation These facts made the complexity of this phenomenon explicit. For instance, droughts are initiated by a meteorological drought, then they generate a hydrological drought, which may produce an agricultural drought and, in cases of prolonged occurrence, may cause a socio-economic drought. The final stage of a socio-economic drought may cause negative impacts, such as the loss of crops and livestock, a decrease in hydroelectric generation, migration, landscape degradation or social conflicts, among others. The main aims of this study were to determine drought occurrence periods and intensities in southern Iran by different drought indices (1), to compare different drought indices (2), Estimating the probability of drought occurring in the future for southern Iran.

Materials and methods

Study area

The coastal city of Bandar Abbas is the capital of Hormozgan province and is located in the south of Iran. This city is located in the form of a coastal strip in the north of the Strait of Hormuz. The coordinates of the area include 27°11' to 27° 12' 30" North 56° 20' to 56° 21' East with an area of 0.913 square kilometers. The average annual rainfall during a 57-year statistical period (1957 to 2010) in Bandar Abbas is 172.6 mm. During the wet season (November to April) the rainfall is 94% of the annual rainfall and during it. In the dry season, the rainfall is 6% of the annual rainfall.

Methods

In the research In order to monitor and evaluate drought assess the representation of droughts from statically down scaled GCMs in the present and evaluate the temporal structure and variability of future meteorological droughts in the south of Iran under RCP 4.5 and RCP 8.5 scenarios. This is done by using products (MPI-ESM-MR) from the Coupled Model Intercomparison Project 5 (CMIP5) of the Third National Communication on Climate Change. The Standardized Precipitation Index (SPI) and Markov chain for droughts Possibilities were used to characterize extreme, severe and moderate droughts in the present (period 1982–2005) and the future (period 2016–2045). This study contributes to the spatial and temporal characterization of present and future droughts, and offers a contrasting analysis between them. In order to evaluate the efficiency of the down scaled method have been used the mean relative error (MRE), root-mean-square error of RMSE and MAE.

Results and discussion

The results of downscale methods showed that the CF-variance method has better correlation and less error than the observed data. The results of the station Markov chain showed that the highest probability is related to dry to normal in summer and dry to wet or normal with 77.8% and 42.9%, respectively. According to the SPI index, the study area will experience more severe and prolonged droughts in the future according to both scenarios of atmospheric circulation model than the historical period. According to Scenario 4.5, with increasing the timescale of SPI, the severity of drought has decreased, so that according to the 6-month SPI, the drought has an intensity of -1.83 and according to the annual SPI has an intensity of -1.66. In the 6-month period, the average dry class and in the 9- and 12-month periods, the normal to wet class have the highest frequency. According to scenario 8.5 according to the SPI classification, autumn and summer are in the near normal (mild) class. Winter and spring fluctuate between drought and non-drought. In Part B, the index ranges from 6, 9 and 12 months in the normal to non-drought grade. Markov's probability should increase from dry to wet for months with one class. In other months, such as April, May, June and July, we probably see different things. These results are similar to the 4.5 scenario, which shows more probabilities in the normal class for several months on average. Comparison of the results of Markov chain probability for the base and future period showed that the probability of wet to dry class occurring for spring, summer and winter seasons is so that the probability of this class occurring for the base and future period according to scenario 4.5 and 8.5 It is equal to 57, 60 and 60 percent for spring, respectively. It is equal to 77.8, 67 and 50 percent for summer and 66.7, 75 and 75 percent for winter, respectively. The results showed that the probability of Markov chain for autumn in the base period from wet to normal with 89% probability to dry class to normal for the next period according to scenario 4.5 and 8.5 is equal to 89 and 90%, respectively. The results from the time periods of 6, 9 and 12 months showed that the probability of occurrence of Markov chain classes for similar scenarios of 4.5 and 8.5 are slightly different with a small percentage of probability. In examining the possibility of drought with the Markov chain, it was observed that each floor tends to move to its nearest floor. A similar issue has been reported in studies (Moreira et al., 2006; Paulo and Pereira, 2007; Yeh et al., 2014) in the study of drought using the Markov chain. According to the diagrams presented for both scenarios, the most probable is related to the normal class. According to the results, with the increase of wet season and drought, the possibility of stagnation has decreased.

کلیدواژه‌ها [English]

  • climate change
  • RCP scenario
  • Drought
  • Markov chain Possibility
  • Bandar Abbass
  1. Agnew, C.T. )2000(. Using the SPI to identify drought, Drought Network News, 12)1(, winter 1999–Spring 2000
  2. Angelidis, P., Maris, F., Kotsovinos, N., Hrissanthou, V. (2012). Computation of drought index SPI with alternative distribution functions. Water Resource Management 26: 2453-2473.
  3. Bhat, U. N., Miller, G. K. (2002). Element of applied stochastic processes. Wiley Interscience, 488 pages.
  4. Banimahd, S.A., Khalili, D. (2014). Drought Class Transition Analysis by Markov Chains and Log Linear Models: Approach for Early Drought Warning. Iran Watershed Management Science and Engineering, 8:37-56(in Persian)
  5. Bahlake, M., Fathabadi, A., Rouhani, H., Seyedian, S. M. (2017). The effect of climate change on wet and dry spells’ characteristics (Case study: Arazkuse and Tamar stations in Golestan Province). Journal of Agricultural Meteorology, 5(2), 11-23 (in Persian)
  6. Doostan, R. (2015). Analysis of the Iran droughts in the Past half century. Journal of Climate research, 23:1-18(in Persian)
  7. Edwards, D.C., McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report. P 97.
  8. Farjad, B., Gupta, A., Marceau, D. J. (2015). Hydrological Regime Responses to Climate Change for the 2020s and 2050s Periods in the Elbow River Watershed in Southern Alberta, Canada. In: Environmental Management of River Basin Ecosystems. Springer International Publishing, Cham, Switzerland. 65–89
  9. Ghahreman, N., babaeian,,Tabatabaei.M. R. (2016). Evaluation the post processed outputs of dynamic models in estimation potential evapotranspiration changes under RCP scenarios (Case Study: Mashhad plain). Journal of Earth and SPACE Physics, 42(3)
  10. Huang, S., Li, P., Huang, Q., Leng, G., Hou, B., Ma, L. (2017). The propagation from meteorological to hydrological drought and its potential influence factors. Hydrol. 547, 184–195. [CrossRef]
  11. Heim, R. R. 2002. A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society 83: 1149–1165.
  12. Heydarzadeh, M, A. Nohegar, A. Malekian, A.A. Khurani. (2020). Assessing the Impact of Future Climate Change on Precipitation and Temperature Meteorological Parameters: A Case Study of Bandar Abbas. Desert Ecosystem Engineering Journal.27:107-121 (in Persian)
  13. Heydarzadeh, M. (2017). The Impacts of Climate Change on Peak Discharge and Flood Prone Areas of Urban Estuaries (Case Study: Parts of Bandar Abbas City). Ph.D. Thesis. PP 236 (in Persian)
  14. Liu, B., Zhou, X., Li, W., Lu, C., Shu, L. (2016). Spatiotemporal characteristics of groundwater drought and its response to meteorological drought in Jiangsu Province, China. Water, 8, 480. [CrossRef]
  15. Lorenzo-Lacruz, J., Garcia, C., Morán-Tejeda, E. (2017). Groundwater level responses to precipitation variability in Mediterranean insular aquifers. Hydrol. 552, 516–531. [CrossRef]
  16. Loo, Y. Y., Billa, L., Singh, A. (2015). Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6
  17. Mckee, T. B., Doesken, N. J., Kleist, J. (1993). The relationship of drought frequency and duration to time scales 8 Conf, Applied climatology. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January
  18. McKee, T.B., Doesken, N. J., Kleist, J. (1995). Drought monitoring with multiple time scales, Proceedings of the Ninth Conference on Applied Climatology. American Meteorological Society, Boston, 233–236.
  19. Mesbah Zadeh, T., Mirakbari, M., Mohseni Saravi, M., Khosravi, H., Mortezaie Farizhendi, G. H. (2019). Study of Current and Future Meteorological Drought Conditions Using the CMIP5 Model under RCP Scenarios. Iran-Watershed Management Science & Engineering, 13:1-21(in Persian)
  20. Moreira, E.E., Paulo, A.A., Pereira, L. S., Mexia, J. T. (2006). Analysis of SPI drought class transitions using loglinear models. Journal of Hydrology, 331(1–2): 349–359.
  21. Ntale, H.K., Thian, M. Y. G. (2003). Drought index and Their Application to East Africa. J. Climatol. 23: 1335-1357.
  22. Paulo, A., Pereira, L. (2007). Prediction of SPI drought class transitions using Markov chains. Water Resources Management, 21(10): 1813–1827.
  23. Pulwarty, R.S., Sivakumar, M. V. (2014). Information systems in a changing climate: Early warnings and drought risk management. Weather and Climate Extremes 3:14–21
  24. Quevauviller, P. (2011). Adapting to climate change: reducing water-related risks in Europe – EU policy and research considerations. Environmental Science and Policy. 14:722-729.
  25. Stagge, J. H., Tallaksen, L. M., Gudmundsson, , Van Loon, A. F,. Stahl, K. (2015a). Candidate distributions for climatological drought indices (SPI and SPEI). International Journal Climatology 35:4027-4040
  26. Svoboda, M., Hayes, M., Wood, D. A. (2012). Standardized Precipitation Index User Guide; Tech. Rep. WMO-No. 1090; World Meteorological Organization: Geneva, Switzerland, 2012
  27. Shahnoushi, N., Shahhossei Dastjerdi, S., Darijani, A., Davari, K. (2010). Drought Risk Management for Sustainable Use of Agricultural Water Resources in Golestan Province (A Case of Gonbad-e-Kavous County). National Conference on Sustainable Development Patterns in Water Management. The Academy of Sciences Islamic Republic of Iran. (In Persian)
  28. Venkataraman, K., Spandana Tummuri, S., Medina, A., Perry, J. (2016). 21st century drought outlook for major climate divisions of Texas based on CMIP5 multimodel ensemble: Implications for water resource management. Journal of Hydrology, 534. 300-316 doi:10.1016
  29. Vasiliades, L., Loukas, A., Patsonas, G. (2009). Evaluation of a statistical downscaling procedure for the estimation of climate change impacts on droughts. Hazards Earth Syst. Sci., 9, 879–894
  30. Wang, L., Ranasinghe, R., Maskey, S., Van Gelder, P. H. A. J. M. K., Vrijling, J. K. (2016). Comparison of empirical statistical methods for downscaling daily climate projections from CMIP5 GCMs: a case study of the Huai River Basin. International Journal of Climatology, 36(1), 145-164
  31. Yeh, H.F., Hsu, H. L. (2019). Using the Markov Chain to Analyze Precipitation and Groundwater Drought Characteristics and Linkage with Atmospheric Circulation. Sustainability, 11, 1817; doi: 10.3390/ su11061817
  32. Yeh, C. F., Wang, J., Yeh, H. F., Lee, C.H. (2014). SDI and Markov Chains for Regional Drought Characteristics. Sustainability, 7: 10789-10808.