بررسی روش های پایش و پیش بینی آتش سوزی نواحی رویشی ایران وجهان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد هواشناسی- دانشگاه آزاد اسلامی، واحد علوم و تحقیقات،تهران، ایران

2 استادیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

چکیده

در سالهای اخیر آتش سوزی در نواحی رویشی رشد فزاینده ای داشته و آثار مخرب زیادی به جا گذاشته است. این مقاله به بررسی روش های پایش و پیش بینی آتش سوزی نواحی رویشی ایران و جهان پرداخته است. مطالعات مربوط به آتش‌سوزی در کشور ما از روش تحلیل سلسله مراتبی برای وزن‌دهی به فاکتورهای مؤثر و سیستم اطلاعات جغرافیایی در وقوع آتش‌سوزی جنگل‌ها استفاده شده است.در برخی مطالعات دیگر، از رگرسیون و الگوریتم درخت تصمیم‌گیری برای انتخاب متغیرهای مؤثر در آتش‌سوزی و همچنین مدل‌سازی خطر آتش‌سوزی استفاده شده است و در روش‌های پیشرفته‌تر از تلفیق سیستم استنتاج فازی و شبکه عصبی، هوش مصنوعی و ماشین بردار پشتیبان برای پیش‌بینی آتش‌سوزی‌های آینده استفاده شده است. استفاده از تصاویر محصول اتش در ایران از جمله تحقیقات نوپا محصوب می شود . که مزیت آن نسب به روش های دیگر این است که در عین ارزان بودن، بسیار سریع نیز هستند، و نتایج حاصل از آن نیز قابلیت به روز شدن بالاتری دارند.

نتایج بررسی های انجام‌شده در کشورهای دیگر نشان می‌دهد که اغلب نوع پوشش گیاهی، شیب، جهت جغرافیایی، فاصله از جاده‌ها، توپوگرافی و کاربری اراضی، مؤثرترین فاکتورها در پایش وقوع حریق جنگل ها بوده‌اند و ادغام لایه‌ها معمولاً بر اساس سلسله مراتب و ضریب خطر در وقوع آتش‌سوزی انجام شده است. از فعالیت های قابل ذکر دیگر کشور ها،تهیه نقشه پایش و پیش بینی آتش سوزی های فعال به جهت شناسایی به موقع آتش سوزی با تصاویر ماهواره ی و شاخص های طیفی مناسب می باشد که نتایج مطلوبی را در جهت تصمیم گیری بهینه برای اطفا و جلوگیری از اتش سوزی را به همراه داشته است. شاخص سیستم رتبه بندی خطر آتش سوزی ایالات متحده نسبت به دیگر روش های مشابه در پایش اتش سوزی جنگل ها و مراتع را شاخصی جامع و مطلوب مطرح می کند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of fire monitoring methods in vegetative areas of Iran and the world

نویسندگان [English]

  • Mina Parnian 1
  • Ebrahim Asadi Oskouei 2
  • MEHDI RAHNEMA 2
1 Ms c. in Meteorology, Azad University, Tehran, , Iran
2 Assistant Professor, Atmospheric Science Research Center
چکیده [English]

In recent years, fires in vegetation areas have increased and have left a lot of destructive effects. Due to the fact that forest fires are affected by various factors. Therefore, this article examines the methods of monitoring and predicting fires in vegetative areas of Iran and the world. A review of research conducted in Iran shows that studies related to fire in our country have used the method of hierarchical analysis to weigh the effective factors and GIS in the occurrence of forest fires. The selection of effective variables in fire as well as fire risk modeling has been used and in more advanced methods the combination of fuzzy inference system and neural network, artificial intelligence and support vector machine has been used to predict future fires. Satellite images and remote sensing have been discussed. It should be noted that the use of fire product images in Iran is one of the nascent researches. Its advantage over other methods is that while they are cheap, they are also very fast, and the results are more up-to-date.

The results of studies conducted in other countries show that most types of vegetation, slope, geographical direction, distance from roads, topography and land use have been the most effective factors in monitoring forest fires and the integration of layers is usually based on hierarchy and risk factor in The occurrence of fires has been done. Also, indicators that are effective from environmental and climatic factors have been used in fire monitoring and forecasting, from the notable activities of other countries, preparation of fire monitoring and forecasting map It is active for timely detection of fires with satellite images and spectral indicators, which has resulted in favorable results for optimal decisions to extinguish and prevent fires. Researchers in recent research have examined the evaluation of monitoring indicators. They set fire to the U.S. Fire Risk Rating System as a comprehensive and desirable indicator compared to other similar methods in monitoring forest and rangeland fires.

Summary of research on fire potential detection in different parts of the world shows that GIS is very effective for developing information, management and forecasting of forest fire activities, so that creating a database in GIS consisting of variables affecting the occurrence of fire risk areas. The occurrence of forest fires is very useful. In most cases, vegetation type, slope, geographical direction, distance from permanent roads and rivers, topography and land use are the most effective factors in the occurrence of fire and the integration of layers is usually based on the hierarchy and risk factors in the occurrence of fire. In other studies, the fuzzy hierarchical analysis method, in other words, the combination of hierarchical analysis and fuzzy sets has been used to model the risk of fire. Satellite TM images have also been used to identify past fires. The general results of these studies show that in hot climates with dry vegetation, high slope, south direction and close to roads and residential areas, the potential for fire risk is high. To evaluate the accuracy of the method and model used in preparing the fire potential map, the map of critical fire areas is usually compared with the map of areas that have caught fire in the past, and if the two match, the model used seems desirable. In some other studies, a combination of fuzzy analysis system and neural network, artificial intelligence and support vector machine has been used to predict fire behavior management. Also, in more advanced methods, logistic regression and decision tree algorithm have been used to select and map effective variables in fire as well as fire risk modeling. Other studies have predicted the risk of fire and prepared a fire risk map by satellite imagery and helped to improve and correct the correct detection of satellite imagery by changing existing algorithms. And in their latest study, the combination of fire weather indicators with satellite imagery helped to detect the occurrence of fire in a timely and accurate manner.

Studies related to the potential of fire in Iran have been mostly in the field of zoning of fire risk from various factors and GIS as well as hierarchical analysis. To predict the occurrence of forest fires, artificial neural networks and climate data have been used. Predictions of fires in forests and pastures have also been made. And in the latest studies, they examined satellite fire products for accurate and timely forecasting. The results show that Madis sensor images have potential and good potential in fire detection and monitoring, and due to the newness of research in this field, there is a lot of activity. Each of the methods of modeling and fire risk assessment that were expressed in this study, advantages And have their own disadvantages; The use of indigenous models for fire hazard mapping definitely results in better results than non-indigenous models, so to use any method to improve the validity of models and methods of fire prediction and monitoring, all environmental and climatic factors suitable for the indigenous Consider instrumentation.

کلیدواژه‌ها [English]

  • : Fire
  • forecast
  • Fire Spread
  • fire models
  • review
  1.  

    1. Aali Mahmoudi Sarab, S., Fiqh, J, Khajeh, P., 2018, Determining the effective criteria for the occurrence of forest fires using GIS and artificial neural network (Case study: Golestan province), https://civilica.com/ doc / 953322
    2. Aali Mahmoudi Sarab, S., Fiqh, J.,Jabarian Amiri, B., 2012."Prediction of fires in forests and pastures using artificial neural network (Case study: forests of Zagros region of Izeh city)", Applied Ecology, 2012, Vol1, No.2pp. 75-85
    3. Adab, H., Kanniah, K.D., Solaimani, K., 2013. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural Hazards, Vol. 65, pp. 1723-1743.
    4. Alexandridis, A., Vakalis, D., Siettos, C.I., Bafas, G.V.2008. A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990. Applied Mathematics and Computation, Vol. 204, pp. 191-201.
    5. Almedia, R., 1994. Forest fire risk areas and definition of the prevention priority planning actions using GIS. Proceedings of the Fifth European Conference and Exhibition on Geographic Information Systems, EGIS 94, Utrecht, EGIS Foundation, pp. 1700-1706.
    6. Arnett, J.T.T.R., Nicholas, C.C., Lori D., Robert W.F., 2015. Detecting forest damage after a lowseverity fire using remote sensing at multiple scales. International Journal of Applied Earth Observation and Geoinformation.vol. 35. pp.239–246.
    7. ,a.2000.,Investigation of the effects of fire on vegetation changes.Master Thesis in Forestry, Mazandaran University.p120.
    8. Azari, A., Mohammadzadeh A. Localization of Bojan algorithm to detect forest fires from Madis sensor satellite images. Mechanical Information Technology Engineering. 2019; 7 (3): 1-16
    9. Beigi Heidarloo, H., Banj Shafi'i, A., Erfanian, M. Preparation of forest fire risk map using hierarchical analysis process technique and frequency ratio method (Case study: Sardasht forests, northwestern Iran). Iranian Forest and Poplar Research, 2014; 22 (4): 559-573. doi: 10.22092 / ijfpr.2015.13172
    10. Bentekhici, N., Bellal, SA. & Zegrar, A. Contribution of remote sensing and GIS to mapping the fire risk of Mediterranean forest case of the forest massif of Tlemcen (North-West Algeria). Nat Hazards 104, 811–831 (2020). https://doi.org/10.1007/s11069-020-04191-6
    11. ,M.,Eduardo Caselles , Juan Manuel Sánchez .,B.,Vicente Caselles.2012.Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data. International Journal of Wildland Fire Vol.21(8).pp.1025.
    12. M. H. and KoseU., “Estimation of burned areas in forest fires using artificial neural networks”, ing. Solidar, vol. 16, no. 3, pp. 1-22, Sep. 2020.
    13. Cencerrado, A., Rodriguez, R., Cortes, A.,Margalef, T.2012. Urgencu versus accurancy:DynamicData Driven application system for natural hazard management. International Journal of Numerical Analysis& Modeling.Vol.9.N0.2.pp.432-448.
    14. Chuvieco E., Salas F.J., Carvacho L., Rodríguez-Silva F. (1999) Integrated fire risk mapping. In: Chuvieco E. (eds) Remote Sensing of Large Wildfires. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60164-4_5
    15. Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martin, P., Vilar, L., Martinez, J., Martıin, S., Ibarra, P., de la Riva, J., Baeza, J., Rodriguez, F., Molina, J.R., Herrera, M.A., Zamora, R., 2010. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, Vol. 221, pp. 46-58.
    16. Chuvieco, E., Congalton, R.G., 1989. Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sensing of the Environment, Vol. 29, pp. 147-159.
    17. Crofts, M., 1998. Forest fire management program at Pukaskwa national park. Proceedings of PRFO, pp. 292-293.
    18. Emami, H., Shahriari, H..2018. Quantification of environmental and human factors in the occurrence of forest fires by RS and GIS methods; Arasbaran Protected Areas. Journal of Geographical Information, Volume 28, Number 112, Winter 2018.
    19. Emre Çolak, Filiz Sunar,.2020.valuation of forest fire risk in the Mediterranean Turkish forests: A case study of Menderes region, Izmir,International Journal of Disaster Risk Reduction,Volume 45,2020,101479,ISSN 2212-4209,https://doi.org/10.1016/j.ijdrr.2020.101479.
    20. Encinas, L.H., White, S.H., del Rey, A.M., Sanchez, G.R., 2007. Simulation of forest fire fronts using cellular automata. Advances in Engineering Software, Vol. 38, pp. 372-378.
    21. Erten, E., Kurgun, V., Musaolu, N., 2005. Forest fire risk zone mapping from satellite imagery and GIS, a case study. Civil Engineering Faculty, Remote Sensing Division, 7p.
    22. Escuin, S., Navarro, R. and Fernandez, P. 2008. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images.International Journal of Remote Sensing‚ 29(4): 1053-1073.
    23. Eskandari, S, 2014. Comparison of three methods of fuzzy hierarchical analysis, overlap method and Dong model to prepare the potential fire risk map of forest fires - a case study of a part of Mazandaran forests, Iranian Journal of Forest and Rangeland Protection and Protection.vol.12(2).pp.137-152.
    24. Eskandari, S., 2015. Investigation on the relationship between climate change and fire in the forests of Golestan Province. Iranian Journal of Forest and Range Protection Research, Vol.13(1), pp. 1-10.
    25. Eskandari, S., 2017. A new approach for forest fire risk modeling using fuzzy AHP and GIS in Hyrcanian forests of Iran. Arabian Journal of Geosciences, Vol. 10(8), pp. 1-13.
    26. Eskandari, S., Chuvieco, E.2015. Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, Vol. 42, pp. 57-64.
    27. Eskandari, S., Miesel, J.R., 2017. Comparison of the fuzzy AHP method, the spatial correlation method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran. Geomatics, Natural Hazards and Risk, Vol. 8, pp. 1-17.
    28. Eskandari, S., Oladi Ghadiklaei, J., Jalilvand,H.2013."Evaluation of the efficiency of Dong model for determining the risk of fire in Zarrinebad Neka forests, Mazandaran province", Iranian Journal of Forest and Poplar Research, 2013a, Vol21(3), pp. 439-451.
    29. Eskandari, S.,Oladi Ghadikolaei, J., Jalilvand, H., Saradjian, M.R., 2013.Detection of fire high-risk areas in northern forests of Iran using Dong model. World Applied Sciences Journal, Vol. 27(6), pp.770-773.
    30. Farrokh Pourshkouri Allah Deh; A.,Darvishsefat;F.,Samadzadeh,P:Atarod, J.2014."Evaluation of Global Fire Detection Algorithm in Identifying Active Fire in Natural Resources Areas Using MODIS Sensor Images (Case Study: Golestan National Park)". Wood and Forest Science and Technology Research, N0.20(4).pp.81-97
    31. Feng, Z.; Cheng, Z.; Chen, S.; Wang, F, Ma, W.,.2020.Identifying Forest Fire Driving Factors and Related Impacts in China Using Random Forest Algorithm.MDPL.Forests.Vol.11.No.5.507.
    32. Gholami,S.,Kefash Charandabi,N.2018.Fire risk zoning and its modeling for Arasbaran forests, National Conference on Technologies and New Geomatic Applications, Tabriz, undefined, undefined
    33. Giri, C., Shrestha, S., 2000. Forest fire mapping in Huay Kha Khaeng wildlife sanctuary, Thailand. International Journal of Remote Sensing, Vol. 21(10), pp. 2023-2030.
    34. Ground, S., Yar Ali, N., Sadeghi Kaji, H.,2013., "Spatial pattern and fire hazard map in the natural lands of Lorestan province", Iranian Forest and Poplar Research.Vol21.N02.pp.231-242
    35. Hadisuwito, A S., Hassan, F H.2019. A Comparative Study of the Forest Fire Danger Index Calculation Methods Using Backpropagation., Journal of Physics: Conference Series, Vol1529.pp.25-27.
    36. Hamedi, N. Ismaili, A. Faramarzi, H.2020. Analysis of potential fire risk scenarios in the forests of Lordegan city using GIS and R. Journal of Science and Research.No17.18
    37. Hedayati, N., Junidi Jafari, H., Ebrahimi Mohammadi, Sh., 2020, Investigation of fire risk in natural areas of Kurdistan province using statistical index technique, natural environment (Iranian natural resources), Fall 1398, Vol72.N03.pp. 403-416.
    38. Hoshiarkhah, B., Jamshidi Alashti, R., 2007"Fire regimes in the forest and the strategy to deal with it", Proceedings of the Second Conference on Natural Disasters.No.9.
    39. http://www.sciencedirect.com/science/article/pii/S0264837719304624
    40. https://doi.org/10.1016/j.agrformet.2016.11.002
    41. Jafari Goldrag, Y., Mohammad Zadeh, A.,Ardakani,2016. fire risk assessment using neural network and logistic regression. J Indian Soc Remote Sens.No. 44,pp. 885–894.
    42. Jahanbakhash,s.,asadi,m., hajimohamaddi,h..2020.Analysis of synoptic patterns of forest fires (Case Study: forests of Golestan province). Geographical. No.70.pp. 19-35.
    43. Jaiswal, R.K., Mukherjee, S., Raju, D.K., Saxena, R., 2002. Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, Vol. 4, pp.1-10.
    44. Janbaz Ghobadi, Gh, 2020. Survey of forest fire risk areas in Golestan province, based on fire risk index (FRSI) using technique (GIS). Spatial analysis of environmental hazards. Vol.6(3).pp.89-102.
    45. Janbaz Ghobadi, Gh., Gholizadeh, B., Majidi Dashliburun, O.2012. Forest fire risk zone mapping from geographic information system in Northern forests of Iran (case study, Golestan province). International Journal of Agriculture and Crop Sciences, Vol.4.No.12.pp. 818-824.
    46. JoséVega-Nievaa,.A.,Vegaa1Carlos,.IvanBriones,.Herreraa.,D.2020.Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico Science of The Total Environment Vol. 718,No.137313.
    47. Jurdao, S., Chuvieco, E., Arevalillo, J.M., 2012. Modelling fire ignition probability from satellite estimates of live fuel moisture content. Fire Ecology, Vol. 8 (1), pp.77-97.
    48. Kant Sharma, L. , Kanga, S. , Singh Nathawat, M. , Sinha, S. and Chandra Pandey, P.2012.Fuzzy AHP for forest fire risk modeling", Disaster Prevention and Management , Vol.21.No.2.pp.160-171
    49. Kargar, M, Jafarian, Z. 2016.Comparison of artificial neural network models and linear regression in predicting forest and rangeland fires in Mazandaran province. Journal of Natural Environment, .Vol.69 (1). pp.159-170.
    50. Kaykhosravi, Q, Khaledi, Sh. yahyavi,a.2020.Investigation of tornado phenomenon in the western Alborz Mountains and its effect on the amount of thermal stresses created in plant cover using Landsat 8 images. "Sepehr" Quarterly Journal of Geographical Information vol29.No113.pp.43-56.
    51. Kazemi,s.,2007. Forest fires and ecosystems - Livestock, Agriculture and Industry Monthly.Vol70.pp.46-56
    52. Kumari,B., Pandey, AC .2020.Geo-informatics based multi-criteria decision analysis (MCDA) through analytic hierarchy process (AHP) for forest fire risk mapping in Palamau Tiger Reserve, Jharkhand state, India. Journal of Earth System Science.Vol129.No.204.
    53. Lee, B.S., Alexander, M.E., Hawkes, B.C., Lynham, T.J., Stocks B.J., Englefield, P., 2002. Information systems in support of wild land fire management decision making in Canada. Computers and Electronics in Agriculture, Vol. 37.pp. 185-198.
    54. Mahdavi, A., Fallah Shamsi, R., Nazari, R., Heidari, M., "Preparation of fire hazard map in forest and rangeland lands of Ilam city using the method of hierarchical analysis", Proceedings of the First International Conference on Fire in Areas of Natural Resources, 1390, Gorgan, Iran, 13.
    55. Mansoori, N. A., Nazari, R., Nasiri, P., Qaraguzlu, A., 2011.,"Development of forest fire crisis management program with RS and GIS technology", the use of remote sensing and GIS in planning, Vol.2, N0.3 , pp. 63-73.
    56. Mohammadi, F., Shabanian, N., Pourhashemi, M., Fatehi, P.,2010., "Preparation of forest fire hazard map using AHP and GIS", Iranian Journal of Forest and Poplar Research, 2010, Volume 18, Number 4, Pages 569-586.
    57. Mutlu, M., Popescu, S.C., Zhao, K., 2008. Sensitivity analysis of fire behavior modeling with LIDAR- derived surface fuel maps. Forest Ecology and Management, Vol. 256, pp. 289-294.
    58. Osmanzadeh, Y., Banj Shafiei, A., Beigi Heidarloo, H.2014.The study of the most important environmental factors and physiography affecting the frequency of forest fires in Kermanshah, the first national conference on environmental management and planning in Iran, Hamedan.No.330209
    59. Pahlavani P, Sahraiian H R.2019.Bigdeli B. Presenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model. Jgit.vol.6 (4).pp.73-96
    60. Parnian, M, Kamali, Gh, 2019 Presenting a statistical model for predicting fires based on meteorological factors affecting the spread of forest fires (Case study of forests in Guilan province), 4th International Congress on Agricultural Development, Natural Resources, Environment And Tourism of Iran, Tabriz.
    61. Pedro Henrique Santos Mota, Samuel José Silva Soares da Rocha, Nero Lemos Martins de Castro, Gustavo Eduardo Marcatti, Luciano Cavalcante de Jesus França, Bruno Leão Said Schettini, Paulo Henrique Villanova, Hugo Thaner dos Santos, Alexandre Rosa dos Santos.2019.Forest fire hazard zoning in Mato Grosso State, Brazil,Land Use Polic.Vol.88.No.104206.
    62. Peer review report 1 on “A Hybrid Artificial Intelligence Approach Using GIS-Based Neural-Fuzzy Inference System and Particle Swarm Optimization for Forest Fire Susceptibility Modeling at A Tropical Area”
    63. Perera, A.H., Cui, W., 2010. Emulating natural disturbances as a forest management goal: Lessons from fire regime simulations. Forest Ecology and Management, Vol. 259, pp.1328-1337.
    64. Pham, B.T.; Jaafari, A.; Avand, M.; Al-Ansari, N.; Dinh Du, T.; Yen, H.P.H.; Phong, T.V.; Nguyen, D.H.; Le, H.V.; Mafi-Gholami, D.; Prakash, I.; Thi Thuy, H.; Tuyen, T.T.2020 Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction.Vol.12,No.1022.
    65. Plucinski, M.P.,, Sullivan, A., Land McCaw.W. L.2020.Comparing the performance of daily forest fire danger summary metrics for estimating fire activity in southern Australian forests. International Journal of Wildland FireVol.29(10).pp.926-938
    66. Pradhan, B., Bin Awang, M.A., 2006. Application of remote sensing and GIS for forest fire susceptibility mapping using likelihood ratio model. Proceedings of Map Malaysia, Kuala Lumpur, India, pp. 7-12.
    67. Pradhan, B.Naderpour, M., MojaddadiRizeei, H.,Khakzad, N,2019.Forest fire induced Natech risk assessment: A survey of geospatial technologies,Vol.191. NO.106558.
    68. Rollins, M.G., Keane, R.E., Parsons, R.A., 2004. Mapping fuels and fire regimes using remote sensing, ecosystem simulation and gradient modeling. Ecological Applications, Vol. 14(1), pp. 75-95.
    69. Roman, M.V., Azqueta, D., Rodrigues, M., 2013. Methodological approach to assess the socio-economic vulnerability to wildfires in Spain. Forest Ecology and Management, Vol. 294.pp. 158-165.
    70. Vadrevu, K.P., Eaturu, A., Badarinath, K.V.S., 2010. Fire risk evaluation using multicriteria analysis, a case study. Environmental Monitoring and Assessment, Vol. 166, pp. 223-239.
    71. A.,Devaux-Ros, E.1995.valuating forest fire hazard with a Landsat TM derived water stress index,Agricultural and Forest Meteorology,Vol77, No.3–4. PP. 207-224.
    72. Zhiwei,W.,Hong S.,H., Robert E.,K., Zhiliang, Z.,Yeqiao,W.,Yanlong.,SH.2019.Current and future patterns of forest fire occurrence in China. International Journal of Wildland Fire.Vol29(2).pp,104-119.