تحلیل عدم قطعیت مدل‌های تغییر اقلیم در پیش‌بینی دمای متوسط ماهانه با استفاده از ابرمکعب لاتین (مطالعه موردی: حوزه آبخیز سد میناب)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران

2 استادیار گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان

چکیده

ارزیابی اثر تغییر اقلیم در دهه‌های آینده با هدف برنامه‌ریزی محیطی و کاهش اثرات آن امری ضروری است. در مطالعات تغییر اقلیم، لحاظ نکردن عدم قطعیت‌های موجود در مراحل مختلف ارزیابی اثرات، سبب کاهش قطعیت اطمینان به خروجی‌های نهایی سیستم خواهد شد. این عدم قطعیت ناشی از کارکرد مدل‌های گردش عمومی، سناریوهای مختلف انتشار و فرآیند ریزمقیاس نمایی است. در این پژوهش، عدم قطعیت تغییرات دمای متوسط ماهانه حوزه آبخیز سد میناب در دو دوره زمانی (2045-2016 و 2075-2046) و بر اساس خروجی پنج مدل اقلیمی (HadGEM2-ES، BNU-ESM، CCSM4، CSIRO-Mk3-6 و MPI-ESM-MR) و سه سناریو RCP2.6، RCP4.5 و RCP8.5 مورد بررسی قرار گرفت. بدین منظور با استفاده از روش Change Factor متغیر دمای متوسط برای دوره‌های آینده، مقیاس‌کاهی گردید. جهت بررسی عدم قطعیت مدل‌ها در سه سناریو و دوره مورد نظر، از روش ابر مکعب لاتین که یک روش نمونه‌برداری تصادفی طبقه‌بندی است، استفاده گردید. در برررسی عدم قطعیت دوره‌ها، در تمامی مدل‌‌ها و سناریوها، عدم قطعیت دوره دوم (2046-2075) در برآورد دما بیشتر از دوره اول (2016-2045) است. بدین مفهوم که افزایش طول دوره نسبت به دوره مشاهداتی سبب افزایش خطا در پیش‌بینی مدل‌های تغییر اقلیم می‌گردد. در بررسی مدل‌ها نیز، کمترین عدم قطعیت مربوط به مدل CSIRO-Mk3-6 در سناریوی RCP2.6 و دوره 2016-2045 و بیشترین عدم قطعیت مربوط به مدل HadGEM2-ES در سناریوو دوره مذکور است.

کلیدواژه‌ها


عنوان مقاله [English]

Uncertainty analysis of global climate models in predicting monthly average temperature using Latin Hypercub Sampling (case study: Minab Dam basin)

نویسندگان [English]

  • Fatemeh Bina 1
  • Ommolbanin bazrafshan 2
  • arashk holisaz 2
1 M.Sc. in Watershed Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan
2 Assistant Professor, Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan
چکیده [English]

It is necessary to understand the climate change in next decades to have a suitable environmental planning for adapting and reducing it's effects. In climate change studies, ignoring uncertainties at various stages of impact assessment will reduce confidence in system results. This uncertainty is due to the performance of general circulation models, different emission scenarios and doanscaling process. In this research uncertainty of monthly average temperature of drainage basin of Minab dam is projected in two periods(2016-2045 and 2046-2075) using outcomes of the five general circulation models of the HADGEM2-ES, BNU-ESM, CCSM4, CSIRO-MK3-6, MPI-ESM-MR under three scenarios of RCP2.6, RCP4.5 and RCP8.5. For this purpose, using the method of variants of average tempreture for change factor, future is downscaled. Latin hypercube method wich is an accidental sampelling is used here for checking the uncertainty of models. The results of period uncertainty, in all models and scenarios showed that, the uncertainty of the second period (2046-2075) is greater than in the first period (2016-2045). It means, increasing the length of the forecast period increases the error in predicting climate change models. The results showed the uncertainty of the different models showed that the least uncertainty was related to the CSIRO-Mk3-6 model in the RCP2.6 scenario and the 2016-2045 period, while the highest uncertainty was related to the HadGEM2-ES model in the scenario and period.It is necessary to understand the climate change in next decades to have a suitable environmental planning for adapting and reducing it's effects. In climate change studies, ignoring uncertainties at various stages of impact assessment will reduce confidence in system results. This uncertainty is due to the performance of general circulation models, different emission scenarios and doanscaling process. In this research uncertainty of monthly average temperature of drainage basin of Minab dam is projected in two periods(2016-2045 and 2046-2075) using outcomes of the five general circulation models of the HADGEM2-ES, BNU-ESM, CCSM4, CSIRO-MK3-6, MPI-ESM-MR under three scenarios of RCP2.6, RCP4.5 and RCP8.5. For this purpose, using the method of variants of average tempreture for change factor, future is downscaled. Latin hypercube method wich is an accidental sampelling is used here for checking the uncertainty of models. The results of period uncertainty, in all models and scenarios showed that, the uncertainty of the second period (2046-2075) is greater than in the first period (2016-2045). It means, increasing the length of the forecast period increases the error in predicting climate change models. The results showed the uncertainty of the different models showed that the least uncertainty was related to the CSIRO-Mk3-6 model in the RCP2.6 scenario and the 2016-2045 period, while the highest uncertainty was related to the HadGEM2-ES model in the scenario and period.It is necessary to understand the climate change in next decades to have a suitable environmental planning for adapting and reducing it's effects. In climate change studies, ignoring uncertainties at various stages of impact assessment will reduce confidence in system results. This uncertainty is due to the performance of general circulation models, different emission scenarios and doanscaling process. In this research uncertainty of monthly average temperature of drainage basin of Minab dam is projected in two periods(2016-2045 and 2046-2075) using outcomes of the five general circulation models of the HADGEM2-ES, BNU-ESM, CCSM4, CSIRO-MK3-6, MPI-ESM-MR under three scenarios of RCP2.6, RCP4.5 and RCP8.5. For this purpose, using the method of variants of average tempreture for change factor, future is downscaled. Latin hypercube method wich is an accidental sampelling is used here for checking the uncertainty of models. The results of period uncertainty, in all models and scenarios showed that, the uncertainty of the second period (2046-2075) is greater than in the first period (2016-2045). It means, increasing the length of the forecast period increases the error in predicting climate change models. The results showed the uncertainty of the different models showed that the least uncertainty was related to the CSIRO-Mk3-6 model in the RCP2.6 scenario and the 2016-2045 period, while the highest uncertainty was related to the HadGEM2-ES model in the scenario and period.It is necessary to understand the climate change in next decades to have a suitable environmental planning for adapting and reducing it's effects. In climate change studies, ignoring uncertainties at various stages of impact assessment will reduce confidence in system results. This uncertainty is due to the performance of general circulation models, different emission scenarios and doanscaling process. In this research uncertainty of monthly average temperature of drainage basin of Minab dam is projected in two periods(2016-2045 and 2046-2075) using outcomes of the five general circulation models of the HADGEM2-ES, BNU-ESM, CCSM4, CSIRO-MK3-6, MPI-ESM-MR under three scenarios of RCP2.6, RCP4.5 and RCP8.5. For this purpose, using the method of variants of average tempreture for change factor, future is downscaled. Latin hypercube method wich is an accidental sampelling is used here for checking the uncertainty of models. The results of period uncertainty, in all models and scenarios showed that, the uncertainty of the second period (2046-2075) is greater than in the first period (2016-2045). It means, increasing the length of the forecast period increases the error in predicting climate change models. The results showed the uncertainty of the different models showed that the least uncertainty was related to the CSIRO-Mk3-6 model in the RCP2.6 scenario and the 2016-2045 period, while the highest uncertainty was related to the HadGEM2-ES model in the scenario and period.

کلیدواژه‌ها [English]

  • Uncertainty analysis
  • Climate change models
  • Latin Hypercube Sampling
  • Minab Dam Watershed
  1.  

    1. Beven, K. J. (2000). Rainfall-Runoff Modelling: the Primer. John Wiley and Sons, NY. 372.
    2. Diaz-Nieto, J., & Wilby, R. L. (2005). A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom, Climatic Change. 69, 245–268.
    3. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap New    NY:  Chapman  and  Hall.
    4. S.,  Johnson,  F.,  Woldemeskel, F., & Sharma, A. (2016). Quantifying  the  sources  of uncertainty  in  upper  air  climate  variables. Journal of Geophysical Research: Atmospheres,  121(8):3859-74.
    5. Ghasem Nezhad, F., Mehdi, F., Bazrafshan, O., & Parvinnia, M. (2019). Uncertainty Analysis of Hydrological Drought Characteristics Using Latin Hypercube Sampling (Case Study: Minab Dam Watershed). Journal of Range and Watershed Management, 72(2), 527-542. doi: 10.22059/jrwm.2019.276424.1356
    6. Guilbert, J. (2016). The Impacts Of Climate Change On Precipitation And Hydrology In The Northeastern United States. Graduate College Dissertations and Theses. University of Vermont.
    7. Hamraz, B., Akbarpour, A., & Pourreza Bilondi, M. (2016). Assessment of Parametr uncertainty of MODFLOW Model using GLUE method (case study:Birjand Plain). Journal of Water and Soil Conservation, 22(6).
    8. Jones, P. D., & Hulme, M., (1996). Calculating regional climatic times series for temperature and precipitation: methods and illustrations, International. Journal of Climatology, 16, 361- 377.
    9. Kamal, A. R. Massahbavani, (2012). The uncertainty assessment of AOGCM & Hydrological models for estimating Gharesu basin temperature, precipitation, and runoff under climate change impact. Iranian Water Research Journal , 9(5), 39-50.
    10. https://www.sid.ir/en/journal/ViewPaper.aspx?id=279717
    11. Mani, , & Tsai,  F. T. (2016). Ensemble  Averaging Methods for Quantifying Uncertainty Sources in Modeling  Climate  Change  Impact  on  Runoff Projection.  Journal  of  Hydrologic  Engineering. 
    12. Mehni, M., & Bazrafshan, O. (2017). Spatiotemporal of Quality and Quantity of Groundwater Resources in the Minab Plain Over the 3past Decades. Journal of Extension and Development of Watershed Management, 18(5), 51-59.
    13. Moradi, M., Bazrafshan, O., Bahreman, A., Esmaelpour, Y. (2018). Assessment of the Relations between the Trends of Climatic Factors and River Flow in Southern Coastal Watersheds, Iran. Watershed Management Research Journal, 31(2), 79-92.
    14. Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81(1), 23-69.
    15. Moriasi, D. N., Arnold, J. G., Van Liew, M.W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model  evaluation  guidelines  for  systematic  quantification  of  accuracy  in  watershed simulations. Journal of  Amer, 50(3), 885-900.
    16. Rahimzadeh, F., Hedayati, A., Pourasgharian, A., & Sisipour, M. (2009). Changes in temperature and rainfall extreme profiles in Hormozgan province. Fourth Climate Change Conference,Tehran, Iran Meteorological Organization.
    17. Roshan, Gh. R., Khoshakhlagh, F., & Azizi, Gh. (2012). Assessment of Suitable General Atmosphere Circulation Models for Forecasting Temperature and Precipitation Amounts in Iran Under Condition of Global Warming. Journal of Geography and develop iranianjournal,10 (27).
    18. Rouhani, H., Ghandi, A., Swywdian, S. M., & Kashani, M. (2016). Uncertainty Analysis of Rainfall Projections (case study: Bojnourd and Mashhad synoptic gaoge station). Journal. of Waterand Soil Conservation, 24(1).
    19. Sanikhani, H., Dinpajoh,Y., Pouryusef, S., Ghavidel, S. Z., & Solati, B. (2014). The Impacts of Climate Change on Runoff in Watersheds (Case Study: Ajichay Watershed in East Azerbaijan Province, Iran). Journal of Water and Soil, 27(6), 1225-1234.
    20. Semenov, M. A., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Journal of Climate Research. 1(14).
    21. Vrugt, J. A., Gupta, H.V., Bouten, W., & Sorooshian, S. (2003). A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters. Journal of Water Resour, 39(8).
    22. Wilby, R. L., Tomlinson, O. J., & Dawson, C. W. (2003). Multi-site simulation of  precipitation  by conditional resampling. Journal of Climate Research, 23(3), 94-183.