دورنمایی از شرایط اقلیمی دهه های آینده در پهنه جنوب شرق کشور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب و هواشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران. ایران

2 دانشیار، گروه جغرافیا..دانشگاه ازاد اسلامی.واحد اسلامشهر. تهران، ایران

3 دانشیارگروه جغرافیا. دانشگاه آزاد اسلامی. واحد علوم و تحقیقات. تهران. ایران.

4 استادیارگروه جغرافیا. دانشگاه آزاد اسلامی. واحد علوم و تحقیقات. تهران. ایران.

چکیده

وقوع پدیده های مخرب جوی و تغییرات وردایی های بزرگ مقیاس آب و هوایی، زندگی و حیات بشری را در مقیاس های منطقه ای تا جهانی به شدت متأثر ساخته است. پارامترهای اقلیمی نظیر دما کمینه، دما بیشینه، بارش در یک محل، از متغیرهایی است که بر اقلیم منطقه تاثیر گذار بوده و شناخت آنها تعیین کننده تغییرات اقلیمی منطقه می باشند. تحقیق حاضر نیز در همین راستا و به دلیل اهمیت آن، به منظور داشتن دورنمایی از شرایط اقلیمی دهه های آینده در پهنه جنوب شرق کشور که کمتر مورد توجه واقع شده، صورت پذیرفته است. در این پژوهش، به بررسی متغیرهای اقلیمی در شش ایستگاه های سینوپتیک پهنه جنوب شرق کشور به دلیل پراکنش مناسب و طول دوره آماری بالا (زابل، زاهدان، خاش، ایرانشهر، سراوان و چابهار) از سال 1987 لغایت 2020 پرداخته شد. نتایج ارزیابی دقت مدل LARS-WG در شبیه سازی متغیرهای اقلیمی براساس شاخص هایMAE ،R2 ،NSE در پهنه جنوب شرق کشور در مرحله صحت سنجی نشان داد ﻣﺪل HadCM2 ﻣﻴﺎﻧﮕﻴﻦ دﻣﺎى ﺳﺎﻻﻧﻪ 23 درجه سانتی گراد پیش بینی کرده و دﻗﺖ ﻣﻨﺎﺳﺒﻲ ﺑﺮاى ﭘﻴﺶﺑﻴﻨﻲ ﺗﻐﻴﻴﺮات اﻗﻠﻴﻤﻲآﻳﻨﺪه ﺑﺮﺧﻮردار اﺳﺖ. میانگین فصلی دما در شش ایستگاه افزایشی و مقدار بارش در ایستگاه های به سمت فصل زمستان و بهار بیشتر می شود؛ بیشترین امواج گرمایی در دوره پایه متعلق به ایستگاه زابل بین 21-20 روز می باشد و درRCP8.5 بیشترین تعداد امواج در ایستگاه ایرانشهر متمرکز می شود و در RCP2.6 هر چه از سمت شمال به جنوب پیش می رویم تعداد بین 19-20 افزایش می یابد. جا به جایی مکانی پهنه های آب و هوایی در سه دوره پیاپی گویای افزایش ضریب خشکی آب و هوایی است. در نهایت اینکه نتایج بیانگر روند افزایش دما و کاهش بارش در دهه های آینده نواحی جنوب شرق ایران خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Perspectives on Climatic Conditions of the Next Decades in the Southeast of the Country

نویسندگان [English]

  • mahsa farzaneh 1
  • Azadeh Arbabi Sabzevari 2
  • Seyed Jamaluddin Daryabari 3
  • , Farideh Asadian 4
1 PhD student in Meteorology, Science and Research Branch, Islamic Azad University, Tehran. IRAN
2 Associate Prof., َDepartment of Geography. Islamic Azad University. Islamshahr Branch. Tehran, Iran
3 , Department of Geography. Islamic Azad university.North Tehran Branch, Tehran. Iran
4 Assistant Professor, Department of Geography. Islamic Azad University. Science and Research Unit. Tehran. Iran
چکیده [English]

Introduction: In the vast country, Iran, which has been widely used in the latitude and diverse altitudes, we see the effects of climate change. One of the most fundamental factors in the structure of the planet is climate, and undoubtedly nature, man and all the preventive life of the widespread influence of the climate. Knowledge of climatic zones and influential elements in each region based on climatic indicators and elements has long been the focus of many scientists. Perspectives are less common in literature and climatological texts; This is while environmental planning and analytical analysis is a systematic attempt to look to the long-term future in the field of climatology; One of the most important challenges today and in the future is the issue of rising temperatures. In general, the study of scientific studies and reports shows that the climate and temperature pattern is changing and this issue needs to be studied and paid more attention to the importance of water resources and agriculture in the study area and tried to study the climatic conditions of the province Sistan and Baluchestan is covered.

Materials and Methods: The study area in the present study is the southeastern part of Iran, Sistan and Baluchestan province. In this study, meteorological data from synoptic stations include daily precipitation, minimum temperature, maximum temperature and sundial for the period 1987-1920. The mentioned data have been obtained from the Statistics and Information Center of the Meteorological Organization of the country. -LARS WG is a generator of meteorological data. The LARS - WG model was designed by a scientist from the Rotamstead Center for Agricultural Studies in the United Kingdom. Using data monitored to study the climate behavior of stations in the statistical period, as well as daily network data of future total circulation models, Modeled future courses daily. The core of this model is the use of the Markov chain, which has been used repeatedly. Performance of LARS - WG model Using error measurement indices and ensuring the suitability of the model, future period data were generated using general turnover model data. In this study, statistical tests were used to evaluate the performance accuracy of the LARS-WG model using NSE, MSE and R2 criteria. In this study, the maximum temperature in the base period and future periods based on two scenarios, RCP2.6 (commitment of countries to reduce greenhouse gases) and RCP8.5 (if not adhering to reducing greenhouse gases) was followed by Using maximum daily temperature data of six synoptic stations in the southeastern part of Iran based on the threshold of the 95th percentile, among the available data, heat waves greater than or equal to three days were identified for each station. Since air temperature determines potential evapotranspiration, the ionp relationship is based on the average total annual rainfall relative to the average evapotranspiration.

Results: To compare the simulated and observational monthly averages, the distribution chart related to the mean of each of the variables in the whole period under study in the southeastern part of Iran was drawn and the correlation coefficient of each was calculated. The distribution diagram of minimum temperature, maximum temperature, precipitation related to the southeastern part of Iran is shown in Figure (3). The observed and generated distribution diagrams show the minimum temperature, maximum temperature, precipitation and sundial of the southeastern zone in the period 1987-2019. As can be seen in the above figures, the results show high correlation coefficients. In general, in the southeastern part of Iran, the correlation coefficients between modeling and observational values in the period under review are significant at least at the level of 1%. Becomes. The least changes are related to the coastal station and the most changes are related to the land stations. Changes in the mean annual temperature difference of the southeastern part of the country during the statistical period with a long-term average of 30 years were investigated; In this case, temperature data show a positive trend in the region and in general, temperature changes in the southeastern part of Iran are evident and these changes can be named as an indicator of climate change.

Conclusion: The HadCM2 model shows that the average annual temperature is 22 degrees Celsius much lower than the observed average, with a difference of -2, and has good accuracy for predicting future climate change. The seasonal average temperature increases in six stations and the amount of rainfall in the stations increases towards winter and spring; Most of the heat waves belong to Zabol station and as we go from north to south, the number of these waves has decreased. The spatial displacement of climatic zones in three consecutive periods indicates an increase in climatic drought coefficient and the expansion of climatic territory. Finally, the results show the trend of increasing temperature and decreasing rainfall in the coming decades in the southeastern regions of Iran.

کلیدواژه‌ها [English]

  • outlook
  • climatic conditions
  • future decades
  • the southeastern part of the country
  •  

    • Asadi, Ashraf, Heidari, Ali (2011): Analysis of changes in temperature and precipitation series of Shiraz during the period 1995-1991, Journal of Geography and Environmental Planning, Volume 22, Series 41, No. 1, pp. 152-137
    • Arbabi Sabzevari, Azadeh, Miri, Morteza, Rahimi, Mojtaba, 1398, Study of Iranian droughts using CRU network data, Islamic Azad University, Islamshahr BranchAbbasi, Fatemeh, Malbousi, Sharareh, Habibi Nokhandan, Majid, Asmari, Morteza (2011): Evaluation of Zagros Climate Change in the period 2039-2010 using microscale data of ECHO public circulation model, Climatological Research Journal, 1 (1), 3.
    • Asadi, A. Jamshidi, O. Kalantari, Kh, 2017, Climate Change Adaptation Mechanisms for Small Farmers in Hamadan Province. Agricultural Extension Science and Education, 13(2), 109-130
    • Bryson, k.a. 1997. the paradigm pf climatology: an essay. Bul. Amer. Meteor. Soc39
    • Ba, M. B, S. E. Nicholson and R. Frouin. 2001. Temporal and spatial variability of surface radiation budget over the African continent as derived from M T S T. II T and spatial variability of surface global surface irradiance, albedo and net
    • Beliani, Yadollah, Fazelnia, Gharib, Bayat, Ali (2012): Analysis and modeling of annual temperature in Shiraz using ARIMA model, Quarterly Journal of Geographical Space, Twelfth Year, No. 38, pp. 144-127.
    • Bahak, Batool. 2019. Spatial analysis of the occurrence of dust phenomenon in Sistan and Baluchestan province with statistical methods. Geography Quarterly (Regional Planning), 8 (3), 97-109
    • Ebrahimzadeh, I, 2010, Land Use Planning and Environmental Planning in Southeast of Iran, Tehran: Institute of Information.
    • Frich, P, L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, And T. Peterson,(2002): Observed Coherentchanges In Climatic Extremes During 2nd Half Of The 20th Century. Climate Res., 19, 193–212.-
    • Faizi, Vahid and Farajzadeh, Manouchehr and Nowruzi, Rabab, 2010, Study of Climate Change in Sistan and Baluchestan Province by Man-Kendall Method, 4th International Congress of Geographers of the Islamic World, Zahedan.
    • Fung, F. Lopez, A. and New, M, 2011, Modeling the Impact of Climate Change on Water Resources, Wiley-Blackwell, N, ISBN: 9781405196710. PP. 43-62.
    • Farzaneh, Mahsa, Dostan, Reza, Habibi Nokhandan, Majid, Koohi, Mansoureh. Temperature zoning of beginning and end of seasons in eastern Iran using modern statistical methods. The first international conference on applied research in agricultural sciences, natural resources and environment. Hamedan, Iran
    • Insafi Moghadam, Tahereh. 2004. Presenting the method of statistical study and evaluation of climate based on index calculation (ACI) of salt lake basin stations, Iranian Journal of Range and Desert Research, Volume 11, Number 4, 17, pp. 474-449.
    • Ismailnejad, Morteza (2013): Identifying the Spatial Behavior of Sistan and Baluchestan Heat Waves with Hot Spot Program in GIS Environment, First National Meteorological Conference, Kerman
    • Jalali, Oruj, Khanjar, Siamak (2009): Investigation of temperature fluctuations using time series models and probabilistic distribution (Case study of Kermanshah city), Journal of Geographical Space, Year 9, No. 27, pp. 132-115.
    • Guiteras R. (2007): The impact of climate change on Indian agriculture, Job market paper-Draft, Department of Vol. 22:1727-1738.
    • Halabian, Amir Hossein (2008): The effect of Azor's perpetrators on the temperature and recipitation of Iran Earth, Master of Guide: Mohammad Reza Kavani, Isle of thesis. University of Isfahan
    • Hulme, M, 2001. Climatic perspectives on Sahelian desiccation: 1973-198. Global Environmental Change, 11: 19-29.
    • IPCC (Intergovernmental Panel on Climate Change), (2007):Climate Change2007: Impacts, Adaptation and Vulnerability. Summary for Policy Makers. The Physical Science Basis.Camb.Univ. Press. ISBN 0-444-42753-8,7: pages 165-177
    • IPCCIntergovernmental Panel on Climate Change. (2007):Summary for PolicyMakers. The Physical Science Basis.Camb.Univ. Press. ISBN 0-444-42753-8,7: pages 165-177.
    • p، coping with impacts of climate variability and climate change in water management، A Scoping paper Wageningen p3
    • Mort, N, and C. Robinson (1996), A neural network system for the protection of citrus crops from frost damage.Computers and electronics in agriculture, 16, pages 177-187
    • Mosayebi, Mohammad, Movahedi, Saeed. 1994. The role of humans in climate change. Journal of Geographical Information "Sepehr", 4 (16), 6-11.
    • Romanof B(1961), Dust storms in Gobian Zone of Mongolia, The First PRC –Mongolia Workshope on Ta – climate change in arid and semi –arid Region over the Central Asia, page 21.
    • Rostami, Mahnaz; Pahlavan Roy, Ahmad; Moghaddamnia, Ahmad (2015): Drought Prediction Using Artificial Neural Network Models and Adaptive Neuro-Fuzzy Inference System in Fars Province Basin, Natural Environmental Hazards, Volume 4, Number 6, pp. 32-21
    • Rudieman, F and Cutbark. John. (1991). Raising the plates and change of the earth's climate. The secret scientific translation of the prime system. Journal of Geological Education, 26
    • Racsko, P. Szeidl, L. Semenov, M , 1991, A Serial Approach to Local Stochastic Weather Nodels. Ecol Model, 57:27–41.
    • Semenov, M. A. Stratonovitch, P, 2010 , “Use of Multi-Model Ensembles from Global Climate Models for Assessment of Climate Change Impacts,” CLIMATE RESEARCH, Number 4, (Pp. 1–14).
    • Semenov, M.A. & Barrow, E.M ,2002, “LARS-WG A Stochastic Weather Generator for Use in Climate Impact Studies”, User Manual, Version, 3.0: 28.
    • Sabzqabai, Gholamreza. Islami, Massoud Macron, Server.2015. Consequences of Climate Change and Its Impact on People's Livelihoods, Third National Conference on Environment, Energy and Biological Defense, Tehran.
    • Tavousi, Taghi, Mohammad Reza Mansouri Daneshvar and Alireza Moghari. Drought intensity zoning in Iran using Hargreaves-Samani evapotranspiration model based on digital topography (DEM), Journal of Geography and Environmental Sustainability, Razi University of Kermanshah, No. 4, pp. 110-95 ٫

    Zhi-qing, C and Z. Zhen-da. 2001. Development of  land desertification in Bashang area in the past 20 years. Journal of Geographical Science, 11(4): 433-43