پیش نگری ویژگی‌های خشکسالی‌آتی تحت سناریوهای RCP در چند نمونه‌ی اقلیمی ایران

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار-گروه پژوهشی مخاطرات و تغییر اقلیم، پژوهشکده اقلیم شناسی و تغییر اقلیم

چکیده

در این پژوهش، به منظور ارزیابی ویژگی‌های آتی خشکسالی ابتدا میزان توانمندی سه مدل اقلیمی در شبیه‌سازی دما و بارش برای دوره پایه (2005-1976) برای چهار نمونه اقلیمی ایران (اهواز، بندر انزلی، شهر کرد و کرمان) بررسی شد و در ادامه رویدادهای حدی خشکسالی (SPEI≤-1) از سری ماهانه برای دو دوره پایه و 2050-2021 تحت سناریوهای خط سیر گازهای گلخانه‌ای (RCP)، شناسایی و ویژگی‌های شدت، سختی و مدت استخراج شد. نتایج نشان داد مدل‌های اقلیمی بجز بندر انزلی، در سایر ایستگاه‌ها، از مهارت مناسبی در شبیه‌سازی متغیرهای دما، بارش، فراوانی طبقات SPEI-1 برخوردار هستند. بر اساس پیش‌نگری انجام شده، در اهواز تحت سناریوی RCP4.5، فراوانی طبقه متوسط (64 رویداد) و تحت سناریوی RCP8.5، فراوانی طبقه شدید SPEI-1(3 رویداد) بیش از دوره پایه (به ترتیب 58 و 1 رویداد) خواهد بود. به ازای دوره‌های بازگشت یکسان، مقادیر شدت خشکسالی‌های حدی تحت سناریویRCP8.5 با دوره پایه تفاوت قابل ملاحظه‌ای خواهد داشت. برای دوره بازگشت 50 سال، شدت این بلیه تحت سناریوی RCP8.5، 4/3 خواهد بود در حالیکه دوره پایه دارای شدت 6/2 می‌باشد. تحت سناریوی RCP4.5، شدت (4/2 برای دوره بازگشت 50 سال) نسبت به دوره پایه اندکی کاهش نشان می‌دهد. برای شهرکرد، فراوانی طبقه متوسط نمایه خشکسالی تحت دو سناریو نسبت به دوره پایه کاهش و در مقابل فراوانی انواع شدید آن افزایش نشان می‌دهد. با بررسی تغییرات تابع چگالی احتمال (PDF) توزیع مقادیر حدی تعمیم یافته (GEV) برای ایستگاه شهرکرد نشان داده شد که میانگین و تغییرپذیری شدت مقادیر حدی این پدیده تحت دو سناریوی افزایش می‌یابد. در ایستگاه کرمان، فراوانی مقادیر شدید SPEI-1 تحت سناریوی RCP4.5 نسبت به دوره پایه افزایش نشان داد. تحت سناریوی RCP8.5، به ازای دوره‌های بازگشت یکسان، انتظار بروز خشکسالی‌های حدی ضعیف‌تر نسبت به دوره پایه وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Projection of Future Drought Characteristics under RCPs scenarios in the four climate zones of Iran

نویسنده [English]

  • Mansoureh Kouhi
Assistant, Disasters and Climate Change Research Group- CRI (ASMERC)
چکیده [English]

Introduction

The Intergovernmental Panel on Climate Change (IPCC) fifth assessment report has pointed out that global warming is intensifying, and the frequency and intensity of extreme climate events such as high temperature and heavy rainfall will increase significantly (IPCC 2013). The weather and climate disasters have also increased and had a very serious impact on social stability, economic development and people’s lives . Probabilistic analysis of drought events plays an important role for an appropriate planning and management of water resources systems, especially in arid or semi-arid regions characterized by low annual or seasonal precipitation. In particular, estimation of drought return periods can provide useful information for a proper water use under drought conditions. As the changes in the frequency and intensity of extreme drought events bring great threats to natural and social systems, studies on the drought events, especially on the analysis of statistical characteristics of extreme drought events, have attracted the attention of an increasing number of scholars in the recent decades.

This study aimed to project future SPEI using RCP8.5 and RCP4.5 projection data. The drought characteristics by the threshold level to the projected SPEI were identified. This study also projected the drought risk of each station (representing four climate zones of Iran) in the 21st century by fitting the drought characteristics to the Generalized Extreme Value (GEV) distribution.

In this study, the analysis of extreme values of standardized precipitation-evapotranspiration index (SPEI) was performed to evaluate the potential future changes in drought characteristics in Keramn, Sharekord, Ahvaz and Bandar Anzali stations which are representing the warm and arid, cold and semi-arid, warm and semi-arid and humid climate respectively. The capability of three global climate models in simulating temperature and precipitation during the base period (1976-2005) for four climate zones of Iran (Ahvaz, Bandar Anzali, Shahrekord and Kerman) was investigated. Drought extreme events (SPEI≤-1) were identified from the monthly series for the base period and the period 2021-2051 under the RCP scenarios, and the characteristics of intensity, severity and duration were extracted.



Materials and methods



As it is difficult to define when the drought started and ended, previous researches assessed the risk of drought in an indirect way by conducting the frequency analysis of the drought indexes.

SPEI can reflect the effect of not only the variability in precipitation but also the variability of evapotranspiration. Thus, this study used SPEI. SPEI is the difference between the random month 𝑖 and PET obtained by using the precipitation and the Hargreaves & Samani (1982) equation, as shown in

D= P_i- 〖PET〗_i (1)

Which is synthesized in each time scale like



D_n^k=∑_(i=0)^(k-1)▒〖P_(n-i)-〖PET〗_(n-i) 〗 (2)

Here, 𝑘 is the time scale of synthesis, and 𝑛 is the month used for calculation.

The severity and duration and drought intensity were calculated using SPEI. Negative SPEIs mean the dry condition; a drought event is defined when the SPEI is continuously negative and reaches a value of “−1.0” or less. Thus, it is assumed that “−1.0” is the threshold level and that the drought starts in the level lower than “−1.0” in monthly SPEI. The aggregate of SPEI while one drought event lasts was defined as the severity of drought.



Results

The results showed that GCMs in the stations under study (except Bandar Anzali), have good skill in simulating the variables of temperature, precipitation, frequency and drought classes. In Ahvaz under RCP4.5 scenario, the frequency of moderate events and under RCP8.5 scenario, the frequency of severe class will likely be more than the base period. For the same return periods, the extreme drought intensity values under RCP8.5 scenario with the base period will be significantly different. Under the opposite scenario, the intensity decreases slightly compared to the baseline period. For Shahrekord, the frequency of the middle class of this phenomenon under two scenarios projected to decrease compared to the 1975-2005 priod and in contrast to the frequency of severe types projected to increase. Changes in Probability Density Function (PDF) of GEV for Shahrekord station showed that the mean and variability of the intensity of extreme values of this phenomenon will likely increase under two scenarios. At Kerman station, the frequency of severe drought under RCP4.5 scenario increase compared to the base period. Under the RCP8.5 scenario, droughts projected to be reduced.

کلیدواژه‌ها [English]

  • climate change
  • Drought
  • GEV
  • severity
  • Intensity
  1. Asakareh, H. (2012). Frequency Distribution Change of Extreme precipitation in Zanjan City, Geography and Environmental Planning, Vol. 23, No.1, pp. 51-66.
  2. Beguería, S., Vicente-Serrano, S. M., López-Moreno, I., & Angulo-Martínez, M. (2009). A global dataset of multiscalar drought indices (SPI and SPEI). In 9th EMS Annual Meeting, 9th European Conference on Applications of Meteorology (ECAM) Abstracts, held Sept. 28-Oct. 2, 2009 in Toulouse, France. http://meetings. copernicus. org/ems2009/, id. EMS2009-93..
  3. Burke, E. J., Perry, R. H., & Brown, S. J. (2010). An extreme value analysis of UK drought and projections of change in the future. Journal of Hydrology, 388(1-2), 131-143.
  4. Dai, A. (2011). Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900–2008. Joural of Geophysical Research, 116, D12115.
  5. Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3: 52–58.
  6. Dai, A. and Zhao T. (2016). Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes, Clim. Change, published online, pp 1–15.
  7. Fisher, R. A., & Tippett, L. H. C. (1928, April). Limiting forms of the frequency distribution of the largest or smallest member of a sample. In Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 24, No. 2, pp. 180-190.
  8. Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Pablo Boisier, J., Christie, D., Galleguillos, M., ... & Zambrano-Bigiarini, M. (2017). The 2010-2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation.
  9. Ge, Y., Cai, X., Zhu, T., Ringler, C. (2016). Drought frequency change: An assessment in northern India palins. Agricultural Water Management, 176: 111-121.
  10. Hargreaves G. H., Samani, Z. A. (1982). Estimating Potential Evapotranspiration, Journal of Irrigation and Drainage Engineering, 108, pp 225–230.
  11. IPCC (2001) Climate change 2001: the scientific basis. World Meteorological Organization, Geneve, p 883
  12. Intergovernmental Panel on Climate Change. (2010). Meeting Report, IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections, National Center for Atmospheric Research, Boulder, Colorado. USA.
  13. Intergovernmental Panel on Climate Change. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge.
  14. Climate Change.( 2014). Synthesis report. In Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.
  15. Katz, R. W. (1999). Extreme value theory for precipitation: sensitivity analysis for climate change. Advances in water resources, 23(2), 133-139.
  16. Khoorani, A., Jamali, Z. (2016). Effects of Climate Change on Drought Duration and Severity in Arid and Semi-arid Stations (Bandarabbassand Shahrekord), Based on HADCM3 Model, 20, No. 57, pp. 115-131.
  17. Kim, B. S., Chang, I. G., Sung, J. H., & Han, H. J. (2016). Projection in future drought hazard of South Korea based on RCP climate change scenario 8.5 using SPEI. Advances in Meteorology, 2016.
  18. Kouhi, M., 2017, Drought Analysis underClimate Change using Copula Functions, Ph.D. Dissertation, Ferdowsi University of Mashad.
  19. McKee, T. B., Doesken, N. J., and Kleist, J. (1993). The relationship of drought frequency and duration to Time scales, Eighth Conference on Applied Climatology, Anaheim, CA, 179–184, 17–22.
  20. Mozaffari, Gh. Shafiei, Sh. (2017).Temporal-Spatial Analysis of Rainfall Days Frequency Trend of Western Iran Regions, 13, No. 52, pp. 77-94.
  21. Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain, C., & Basara, J. B. (2018). Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bulletin of the American Meteorological Society, 99(5), 911-919.
  22. (2013). Downscaled CMIP3 and CMIP5 Climate Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs. U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver, Colorado, 116 p., available at: http://gdo­dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_c limate.pdf.
  23. Salajeghe, A., Mesbahzade, T., Soleimani Sardoo, F., Alipour, N. (2018). Assessment of Hydrological Drought Using Constand Treshold Level, Iranian Journal of Watershed Management science, Vol. 11, No. 39.
  24. Sheffield, J., Wood, E. F., Roderick, M. L. (2010). Little change in global drought over the past 60 years, Nature, 491, 435–440.
  25. Shiau, J.T. (2006). Fitting drought duration and severity with two-dimensional copulas. Water Resources Management 20, 795–815.
  26. Sousa, P.M., Trigo, R. M., Aizpurua, P., Nieto, R., Gimeno, L., Garcia-Herrera, R. (2011). Trends and extremes of drought indices throughout the 20th century in the Mediterranean, Nat. Hazards Earth Syst. Sci., 11, 33–51. doi:10.5194/nhess-11-33-2011.
  27. Taylor, K.E., Stouffer, R.J., Meehl, G.A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society. 93: 485–498.
  28. Touma, D., Ashfaq,M., Nayak,M., Kao,S.C,Diffenbaugh, N.S. (2014). A Multi-model and Multi-index Evaluation of Drought Characteristics in the 21st Century, Journal of Hydrology, In Press. doi:10.1016/j.jhydrol.2014.12.011.
  29. Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., Sheffield, J. (2014). Global warming and changes in drought, Nat. Clim. Change, 4, pp 17–22.
  30. Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
  31. Experts agree on a universal drought index to cope with climate risks. WMO Press Release. (2009). No. 872. Available online: http://www.wmo.int/pages/prog/wcp/agm/meetings/wies09/documents/ 872_en.pdf (accessed on 17 July 2018).
  32. World Meteorological Organization. (2011). Weather extremes in a changing climate: hindsight on foresinght. WCDMP, 63:11075-6.
  33. Zahedianfar, F., 2014, Frequncy Analysis of Flood and Meteorological Drought base on Extreme Value Theory, M.Sc. Dissertation, Gorgan University of Agricultural Science and Natural Resources.
  34. Zamani Sabzi, M., Saeeddi , A., Hassani, M. (2013). Debt Capacity ,Securities Market Approach (Evidence from Tehran Stock Exchange), Quarterly Journal of Securities Exchange, Journal of Geography and Planning, Vol. 12, NO. 46, pp. 101-126. Doi: 22034/jse.2019.11157.
  35. Zhai, J., Mondal, S. K., Fischer, T., Wang, Y., Su, B., Huang, J., ... & Uddin, M. J. (2020). Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research, 246, 105111.