تحلیل همبستگی‌های درون‌سالانه بارش هفتگی ‌با دورپیوندNAO در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری هواشناسی کشاورزی، گروه آبیاری و آبادانی، دانشگاه تهران، کرج

2 گروه آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

3 گروه آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

4 دانشگاه تهران

چکیده

نوسان اطلس شمالی (NAO) یکی از سیگنال‌های بزرگ مقیاسی است که اقلیم نیمکره شمالی زمین را تحت تاثیر قرار می‌دهد. تحقیقات مختلفی همبستگی بارش‌های ایران را با شاخص‌های NAO در مقیاس‌های ماهانه تا سالانه بررسی کرده­اند. مقیاس‌های زمانی همدید، کمتر از یک ماه هستند که منجر به وجود تعداد زیاد داده صفر در سری زمانی بارش می­شوند. بنابراین، ضریب همبستگی بین بارش و شاخص NAO اریب می­شود. تحقیق حاضر، مقیاس‌ زمانی هفتگی را در نظر گرفته و برای رفع اثر نامطلوب صفرها از ضریب همبستگی متقابل پیرسون پیراسته  استفاده کرده است. بارش روزانه دوره آماری ۱۹۷۹-۲۰۱۶ از پایگاه ERA-Interim (با دقت نیم درجه) و NAO  از درگاه http://www.cgd.ucar دریافت و میانگین متحرک هفتگی داده‌ها برای هموارسازی محاسبه شدند. سپس، همبستگی‌های درون‌سالانه بین بارش شبکه نقاط منظم کشور و شاخص NAO مربوط به شش ماه سرد سال، نوامبر تا آوریل هر سال محاسبه شدند. در نهایت، یک سری زمانی همبستگی‌ها به تعداد سال­های آماری شامل ۳۷ مشاهده به دست آمد. تحلیل سری همبستگی­ها نشان داد که  در هر نقطه شبکه دامنه تغییرات وسیعی از منفی تا مثبت دارد. نتایج نشان داد میانگین این ضرایب تقریبا صفر است اما میانه این ضرایب در بخش‌هایی از غرب و جنوب کشور منفی است. اکثر نقاط کشور دارای ضریب همبستگی مثبت با شاخص NAO هستند. بررسی همبستگی‌های درون‌سالانه جزئیات بیشتری از هم‌تغییری سری زمانی بارش نقاط مختلف کشور با شاخص NAO  فراهم می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Intera-annual Correlations of Weekly Precipitation with NAO Teleconnection in Iran

نویسندگان [English]

  • Nafiseh SeyyedNezhad Golkhatmi 1
  • Javad Bazrafshan 2
  • Arezo Ghameshlou 3
  • Parviz Irannejad 4
1 University of Tehran, Karaj, Iran
2 University of Tehran, Karaj, Iran
3 University of Tehran, Karaj, Iran
4 University of Tehran
چکیده [English]

Introduction
The North Atlantic Oscillation (NAO) is one of the large climate signals that affect partly climate variabilities in northern hemisphere. Various studies have considered covariation between precipitation in Iran with NAO mainly at monthly timescale. No research has been conducted on a weekly time scale. In this study, the covariate between ERA-Interime gridded precipitation data over Iran and NAO index was investigated. The challenge of this study is implementing correlation alalyses in arid and semi-arid areas of the country, where the frequency of zero precipitation data across the year is high, at weekly timescale.
 
Materials and methods
In the study was used the daily data of precipitation amount obtained from reanalysis ERA-Interim (ECMWF) and the daily data NAO indices obtained from the url http://www.cgd.ucar, both of them related to the cold months of the period of 1979-2016 (November (N), …, April (A); or NDJFMA) were considered. The gridpoints cover 44°E - 64°E and 25° N - 40° N (about geographical area of Iran) with 0.5°* 0.5° spatial resolution. At timescales less than one month, a large number of zero values may appear in precipitation time series, leading bias estimate in correlation coefficient between precipitation and NAO. The present study calculated moving average of the data for smoothing time series and removing the undesirable effect of enormous zeroes in the precipitation time series. Also, Modified Pearson correlation coefficient,, was used to unbias the estimation of traditional Pearson correlation coefficient.  centers nonzero data around their average and works with new time series. Each year, the relationship between precipitation and NAO was calculated in terms of ; therefore, a set of 37 Modified Pearson correlation coefficients corresponding to 37 years of the record period was obtained. Besides, in each year,  was calculated for the lag times of 1-45 weaks. Among the simultaneous and lagged , the significant coefficient that its absolute value was greatest was selected for each year. This allows identifying gridpoints with the significant impact of NAO on precipitation. The minimum, maximum, median and standard deviation of selected   values at each gridpoint were estimated and showed with ,,  and  notations, respectively.
 
Results and Discussion
The results of this study are summarized as follows:

s (modified Pearson correlation coefficient) between precipitation and NAO had wide range from negative to positive values across the study area.
Based on the probability of precipitation occurring in years it seems that this method can better quantify the effect of the NAO negative phase, NAO-, than NAO+ on year-to-year variability of precipitation.
The mapping showed that most regions of Iran have the positive correlation with the NAO index. Also, most parts of Saudi Arabia (east and central parts), the highlands of Afghanistan, the Persian Gulf and Afghanistan have either a positive relationship with the NAO or are more or less affected by the positive phase. But this correlation is negative in large areas to the west and southwest, in small parts in the east, along the Afghanistan-Turkmenistan border, in the south-east of Iran (the Oman Sea coast), the western regions of the Caspian Sea, northern Turkey and Azerbaijan. Given that the areas with negative correlation coefficient (), have bigger precipitation event probability in the NAO-, it seems that they are affected by NAO- more than other areas. Activity of low pressure in the eastern Mediterranean increases during NAO-; therefore, the precipitation over Iran increases. But areas with positive correlation coefficients do not necessarily receive more precipitation in NAO+.
The largest values of are in the northwest, east, parallel to the southwest-northeast and the southeast of Alborz Mountains. This index showed that there is more variance of coefficients in these areas.

 
Conclusion
This paper considered the relationship between precipitation and NAO index at weekly timescale. The results showed that the precipitation occurrence in Iran coincides with the negative phase of NAO. The proposed approach for bias correction of Pearson correlation coefficient acted successfully in investigating the effect of NAO on the cold months precipitation over Iran.
 

  1.  

    1. Ahrens, C. D., 2008, Meteorology Today, An introduction to weather, climate and the environment (Babaei M. R. Trans.). Cengage Learning: Toronto, Canada.
    2. Alizadeh, A., M. Erfanian, and H. Ansari, 2011, Assessment of Teleconnection Patterns Affecting Rainfall and Temperature (Case Study: Mashhad Synoptic Station), Iranian Journal of lrrigation and drainage, 2(5), 176-185.
    3. Bazrafshan, A., A. Salajegheh, A. Fatehi Maraj, M. Mahdavi, and J. Bazrafshan, 2012, Investigating the relationship between oceanic phenomena and spring fluctuations in the Karkheh River. 9th International Congress of Civil Engineering, Isfahan University of Technology (in Persian).
    4. Bollasina, M. A., Messori, G. 2018, On the link between the subseasonal evolution of the North Atlantic Oscillation and East Asian climate, Climate Dynamics, 51:3537–3557.
    5. Chubin, B., Sh. Khalighi sigaroudi, and A. Malekian, 2013, Study of the effect of large-scale climate signals on the seasonal rainfall in Maharlo-Bakhtegan watershed. Range & Watershed Management, Iranian Journal of Natural Resources, 69 (1), 51-63 (in Persian).
    6. Ciemer, C., N. Boers, M. J. B. Henrique, J. Kurths, A. Rammig, 2018, Temporal evolution of the spatial covariability of rainfall in South America. Climate Dynamics, 51:371-382.
    7. Fatahi E., K. Nawhi, and M. Delavar, 2009, Study of surface of snow cover of southwest basins of Iran in relation to climate signals. Geographical Research, 95, 109-130 (in Persian).
    8. Filippi, L., E. Palazzi, J. Von Hardenberg, and A. Provenzale, 2014, Multidecadal variations in the relationship between the NAO and winter precipitation in the Hindu Kush-Karakoram. Journal of Climate, 27(20), 7890–7902.
    9. Hejazizadeh, Z., E. Fatahi, M. Saligheh, and F. Arsalani, 2013, Study on the Impact of climate signals on the Precipitation of the central of Iran using Artificial Neural Network. Journal of Applied research in Geographical Sciences, 13(29), 75-89 (in Persian).
    10. Hosseinzadeh Talaee, P., H. Tabari, and S. Sobhan Ardakani, 2014, Hydrological drought in the west of Iran and possible association with large-scale atmospheric circulation patterns. Hydrological Processes, 28(3): 764–773.
    11.  Hurrell, J. W., 1995, Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269,676–679.
    12. KhoshAkhlagh, F., N. Ghanbari, and J. M. Samaquosh, 2009, the study of North Atlantic Oscillation effect on temperature and precipitation regimes of southern shores of Caspian Sea. Physical Geography Research Quarterly, 40(66), 57-70 (in Persian).
    13. Kim, W. T., C. Yoo, and A. J. Hyun, 2007, Influence of climate variation on seasonal precipitation in the Colorado River Basin. Journal of Stochastic Environmental Research and Risk Assessment, 22(3): 411-420.
    14. Mohammadnejad, A. R., F. Ahmadi-Givi, and P. Irannejad, 2012, Effect of Mediterranean systems on drought in west of Iran. Earth and space physics, 39(3): 97-110.
    15. Zoljoodi, M. B. Sanaei, P. Ghafarian, 2017, Studying the Relationship between Wet and Dry Periods of Urmia Lake Basin and Teleconnection Pattern of North Atlantic Oscillations, 32 (2).
    16. Osborn, T. J., 2006, Recent variations in the winter North Atlantic Oscillation, Weather, 61: 353-355.
    17. Seyyed Nezhad Golkhatmi, N., 2019, Application of Network Analysis approach in studying the effect of two large-scale climatic signals (NAO and MJO) on the time-space drought patterns in Iran (Thesis). University of Tehran, Karaj, Iran.
    18.  Shabbar, A., j. Huang, and K. Higuchi, 2001, The relationship between the wintertime north Atlantic oscillation and blocking episodes in the north Atlantic, International journal of climatology, 21: 355–369.
    19. Tajaddini, M., A. Fatehi marj, A. Salajaghe, and M. Hosseinpour, 2011, Assessment on the relationship between climatic signals and meteorological droughts in the Dry Climate of Kerman. First National Conference on Drought and Climate Change, Research Center for Water Scarcity and Drought in Agriculture and Natural Resources, Karaj, 169-179 (in Persian).
    20. Vallis, G. K. and E. P. Gerber, 2008, Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index, Dynamics of Atmospheres and Oceans, 44: 184-212.
    21. Visbeck, M. H., J. W. Hurrell, L. Polvani, and H. M. Cullen, 2001, The North Atlantic Oscillation: Past, present, and future, 98 (23), 12876-12877.
    22. Walker, G. T., E. W. Bliss, 1932, World weather V. Memoirs of the Royal Meteorological Society 4, 53–84.