پیش بینی بهترین مدل سری زمانی پارامترهای اقلیمی در حوضه آبریز هیرمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکترا اقتصاد کشاورزی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار، دانشکده اقتصاد و مدیریت، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

3 استادیار دانشگاه سیستان و بلوچستان

چکیده

یکی از معضلات جامعه بشری امروزی، تغییرات اقلیمی است و به عنوان تهدیدی جدی برای کره زمین به حساب می‌آید که ارزیابی و بررسی عناصر آن به منظور برنامه‌ریزی منابع آب و مدیریت در شرایط بحرانی از اهمیت بسزایی برخوردار می‌باشد. لذا برآورد و پیش‌بینی دما و بارش برای هر منطقه و حوضه آبریز بعنوان با اهمیت‌ترین پارامترهای اقلیمی در استفاده مناسب و بهینه از منابع آب به شمار می‌آید و ضروری دانسته شده که در زمینه مدیریت منابع آب و پیش‌بینی صحیح آن پژوهش‌هایی انجام گردد که با توجه به آن کشاورزان منطقه و برنامه‌ریزان منابع آبی به شیوه مناسبی عمل نمایند تا در آینده دچار آسیب‌های جبران ناپذیری نشوند. هدف اصلی این مطالعه بررسی تغییرات دما و بارش با استفاده از مدل سری زمانی در منطقه سیستان در حوضه آبریز هیرمند و پیش‌بینی این پارامترها در سال‌های آتی جهت برنامه‌ریزی هر چه بهتر مدیریت منابع آب است. در این پژوهش از مدل با نرم‌افزار برای دوره آماری 1397- 1379 استفاده شد. صحت و دقت مدل‌ها براساس آماره‌های ، و تحلیل نمودار توابع خودهمبستگی و خودهمبستگی جزئی تأیید شده است. مدل مناسب دما فصلی و بارش فصلی بدست آمده است. نتایج نشان می‌دهد که مقدار قدر مطلق برای دما در تمامی پارامترها به غیر از ثابت بیش از 2 بوده و آن کمتر از 05/0 و همچنین کمترین مقادیر معیارهای و را دارد، و برای بارش حوضه مقدار قدر مطلق در تمامی پارامترها به غیر از ثابت بیش از 2 بوده و آن کمتر از 05/0 و همچنین کمترین مقادیر معیارهای و را دارد، بنابراین. نتایج این پژوهش حاکی از آن است که این مدل‌ها از دقت تقریباً خوبی برای پیش‌بینی دما و بارش فصلی برخوردار می‌باشند

کلیدواژه‌ها


عنوان مقاله [English]

Forecasting the best time series model of climatic parameters in Hirmand catchment

نویسندگان [English]

  • Neda Ali Ahmadi 1
  • Ebrahim Moradi 2
  • seyed mehdi hosseni 3
  • Ali Sardar Shahraki 3
1 PhD student in Agricultural Economics, Sistan and Baluchestan University
2 Assistant Professor, Department of Agricultural Economics, Sistan and Baluchestan University
3 Faculty member of university of sistan and baluchestan
چکیده [English]

Introduction
One of the greatest human problems in the present and future is the scarcity of water resources and the inadequate distribution of water resources. One of the important climatic elements and parameters in each region is the prediction and estimation of precipitation and temperature, and this helps planners to achieve good harvest patterns from water sources and to farmers for crop management, especially dry farming. In addition, it reduces the likelihood of irreparable damage caused by droughts and floods. Precipitation is an important source of water throughout the world, including arid and semi-arid regions. The element of precipitation is one of the most complex natural phenomena. In fact, the tangible and intangible effects are so scary that they move from an explicit legal system to a complex structure. Another important factor affecting water resources is the temperature element. Therefore, investigation and prediction of temperature in each region and catchment can be of great importance for optimal utilization of water resources, reduction of evapotranspiration, etc.
The purpose of this study is to predict the precipitation and temperature in Sistan and Baluchestan province. Due to climate change and the downward trend of precipitation and increase in temperature in the region, it is attempted to predict precipitation and temperature in 13 Next year, better management of the use of water resources in the agricultural and non-agricultural sectors.
Materials and methods
General pattern of non-seasonal and seasonal order
A) Degree seasonal autoregressive process
The general model of non-seasonal and seasonal order is shown in relation (1)

The seasonal autoregressive pattern can be regarded as a special case of the ordinary non-seasonal autoregressive model in which the coefficients are only zero at the seasonal delays .
(B) The process of the seasonally moving average of the degree Q of this process is expressed in (2):

Results and discussion
In the present study, the Akaike criterion based on the residuals of the fitted model and the best fitted model criterion were selected from all the models for the Hirmand catchment. According to the criteria, the best model is the one that has the least value P- Value, and the highest T. The results of these criteria were identified. The SARIMA model has the least AIC and SBC value. Results of different SARIMA models of time series and criteria,P- Value, AIC ,SBC and T. Table 2 shows the catchment rainfall. For the catchment only in the model , the absolute value T of all parameters except the constant is greater than 2 and it is less than 0.05 and also has the lowest criteria AIC and SBC values, so the best model is known.
Table (4) shows the comparison of different time series models for the static temperature data of the Hirmand catchment over the 18-year period (2001-2019). According to the criteria P-Value, ، ، and . the best model is the one that has the least value, and the highest. The results of these criteria were identified. The model has the least value and. Results of different models of time series and criteria ، ، and . Table (4) shows the catchment temperature. For the catchment temperature only in the model the absolute value of all parameters except the constant is more than 2 and it is less than 0.05 and also has the lowest values of criteria and, therefore, the best model is known.
Conclusion
In this study, the results of Lajang-Box test for the selected model of monthly temperature and precipitation of the Hirmand catchment for all delays were P-VALUE greater than 5%, which confirms the hypothesis that the residuals are uncorrelated. Also with varying degrees of freedom the test statistic is less than 5% of the kiddo table and the null hypothesis is accepted. The monthly temperature of the Hirmand basin has an increasing trend and the monthly rainfall has a decreasing trend, so planners and policymakers should apply policies to optimize water use in the region.
1- Optimal use of water resources is recommended in case of increase of temperature and decrease of bonding in the area.
2- Manage irrigation water during drought and allocate water to more essential crops and crops that have a comparative advantage. Applying the knowledge of experts in agriculture, plant breeding and climatology to adapt the type and extent of crop cultivation to climatic conditions.

کلیدواژه‌ها [English]

  • Forecasting
  • Autocorrelation
  • time series
  • SARIMA
  1. Abdollahnejad, K. (2016). Time series models in forecasting monthly rainfall (A case study of Hashemabad station Gorgan), Journal of Geographical Space Preparation, Golestan University Scientific Journal, No. 5, No. 17, pp. 25-25. [In Persian]
  2. Aghelpour, P. and Nadi, M. (2019). Assessing the Accuracy of the SARIMA Model in Modeling and Predicting the Long-Term Mean Monthly Mean Temperature in Different Climates of Iran, Journal of Climatological Research, Ninth Year, No. 35, pp. 113–126. [In Persian]
  3. Azar, A. and Momeni, M. (1998). Statistics and its application in management, side publications. [In Persian]
  4. Bloomfield, P. Nychka, D. (1992). Climate spectra and detecting climate change. Climatic Change, 21(3):275-287.
  5. Box, G.P.E. Jenkinks, G.M. and Reinsel, G.C. (1004). Time Series Analysis: Forecasting and Control, Holden-Day, 3th Edition. 575 p.
  6. Brooks, C.E.P. and Carrthers, N. (1953). Handbook of Statistical Methods in Meteorology. London, H.M.S.O., pp 412.
  7. Chetfield, K. (2010). Introduction to Time Series Analysis (Strong Translation, H), Ferdowsi University of Mashhad Publications, First Edition, Third Edition, 290 p. [In Persian]
  8. Curceac, S. Ternynck, C. Ouarda, T. Chebana, F. and Dabo Niang, S. (2019). Short-term air temperature forecasting using Nonparametric Functional Data Analysis and SARMA models, Environmental Modelling & Software, Volume 111, Pages 394-408.
  9. Dabral, P.P. and Murry, M.Z. (2017). Modelling and Forecasting of Rainfall Time Series Using SARIMA. Environ. Process. 4, 399–419, doi:10.1007/s40710-017-0226-y.
  10. Feizi, V. FarAJzadeh, M. and Nozari, R. (2011). Study of Climate Change in Sistan and Baluchestan Province by Man-Kendall Method, Proceedings of the Fourth International Congress of Islamic World Geographers, Iran- Zahedan. [In Persian]
  11. Folland, C. K. (1990). Observed climatic variation and change, climate change. The IPCC Scientific Assessment, Cambridge University Press, 25:195-238.
  12. Folland, C.K. (1990). Observed Climatic Variation and Change, Climate Change, Cambridge University Press, 195-238.
  13. Golabi, M. Akhund Ali, A. M. Radmanesh, F. and Kashefipour, M. (2015). Comparison of the Forecasting Accuracy of Box-Jenkins Models in Seasonal Rainfall Modeling in Khuzestan Province, Geographical Research Quarterly, Volume 29, Number 3, 114, No. 72, 61-72. [In Persian]
  14. Haltiner, J. P. D. and Salas, J. (1988). Development and testing of a multivariate, seasonal ARIMA(1,1) model, Journal of Hydrology, 104: 247-272.
  15. Hansen, J. and Lebedeff, S. (1988). Global surface air temperatures: Update through 1987. Geophysical Research Letters, 15(4): 323-326.
  16. Hossein Ali Zadeh, M. Hassan Ali Zadeh, N. Babanjad, M. and Rezanjad, M. (2015). Prediction of Monthly Precipitation Using Special Time Series Packages in R Software (Case Study: Araz Shark Station in Golestan Province), Journal of Conservation and Exploitation of Natural Resources, Volume 2, Number 2 , pp. 12-1. [In Persian]
  17. Jones, P.D. Raper, S.C.B. Bradley, R.S. Diaz, H.F. Kellyo, P.M. and Wigley, T.M.L. (1986), Northern hemisphere surface air temperature variations: 1851–1984. Journal of Climate and Applied. Meteorology, 25(2): 161-179.
  18. Khani Tamliye, S. Khani Tamliye, Z. A. Hosseini Sadiqh, S. M. Kamangar, M. and Shamsi, Z. (2020). Modeling and Forecasting Isfahan Monthly Average Temperature Using SARIMA Model, Journal of Environmental Science and Water Engineering, Volume 5, Number 2, pp. 124- 114. [In Persian]
  19. Khatar, B. and Bahmani, A. (2016). Temperature Forecasting of Soil Layers Using Time Series Models, Journal of Soil Research (Soil and Water Sciences), A, Volume 29, Number 2, pp. 211-199. [In Persian]
  20. Kheradmandnia M. and Asakereh H. (2001). Pattering of ARIMA for Annual Average Temperature in Jask (Iran). 3rd Conference of Stochastic Process, Isfahan University. 41-51 [in Persian].
  21. Khorrami M. and Bozorgnia A. (2007). Time series analysis with software MINITAB 14, Mashhad Publication, Sokhan Gostar [in Persian].
  22. Maniraguha, D. and Umunoza Gasana, E. (2018). Box-Jenkins analysis of mean monthly temperature in Rwanda, Afrika Statistika, Vol 13, No 1.
  23. Maroufi, S. Norouz Walashi, R. and Golkar, F. (2018). Modeling Monthly Precipitation Forecasting in South Baluchestan Basin, Geographical Research Quarterly, Thirty-Second Year, Issue 1, Serial No. 124, pp. 162- 149. [In Persian]
  24. Masoudian, A. (2004). Investigation of Geographical Distribution of Precipitation in Iran by Periodic Factor Analysis Method, Geography and Development Quarterly, No. 1, pp. 79-88. [In Persian]
  25. Mazidi, A. Shafi'i, Sh. and Taqizadeh, Z. (2015). Analysis and Modeling of Yazd Annual Temperature Using ARIMA Model, Geographical Explorations of Desert Areas, Second Year, No. 3, pp. 140- 115. [In Persian]
  26. Meteorological Organization of Sistan and Baluchestan, (2019).
  27. Narasimha Murthy, K.V. Saravana, R. and Vijaya Kumar, K. (2018). Modeling and forecasting rainfall patterns of southwest monsoons in North–East India as a SARIMA process. Meteorol Atmos Phys 130, 99–106. doi:10.1007/s00703-017-0504-2.
  28. Salahi, B. (2017). Modeling Some Effective Climate Indicators of Ardebil Sepnoptic Station for Natural Crisis Management, Journal of Geographical Space, 16th Year, No. 54, pp. 194-177. [In Persian]
  29. Saplioglu, K. Cimen, M. and Akman, B. (2010). Daily precipitation prediction in Isparta station by artificial neural network: Ohrid, Republic of Macedonia.
  30. Sedaghat Kerdar, A. and Fatahi, A. (2006). Drought Awareness Indicators in Iran, Journal of Geography and Development, No. 11, pp. 59-76. [In Persian]
  31. Shabani, B. Mousavi Baygi, M. Jabbari Noghabi M. and Ghareman B. (2014). Modeling and predication of monthly max and min temperatures of Mashhad plain using time series models. J. Water Soil, 27(5), 896-906 [in Persian].
  32. Soltani Gurdfaramarzi, S. Saberi, A. and Ghaysouri, M. (2018). Determining the Best Time Series Model in Predicting the Annual Precipitation of Selected Stations in West Azarbaijan Province, Journal of Applied Geographical Sciences, 17th Year, No. 44, pp. 105-87. [In Persian]
  33. Tavakoli, M. Shiravani, A. and Nazem al-Sadat, M. J. (2017). Statistical Forecasting of Monthly Average Surface Temperature of Northwest Indian Ocean Region, Iranian Journal of Geophysics, Volume 10, Number 3, pp. 76-66. [In Persian]
  34. Wisipour, H. Masoumipour Samakush, J. Sahneh, B. and Yousefi, Y. (2011). Predictive Analysis of Rainfall and Temperature Trends Using Time Series Models (ARMA), Journal of Geography, pp. 65-80. [In Persian]
  35. Yamoah, A. Saeed, B. I. I. and Karim, A. (2016). Sarima Modelling and Forecasting of Monthly Rainfall in the Brong Ahafo Region of Ghana, World Environment, 6(1): 1-9.  DOI: 10.5923/j.env.20160601.01.
  36. Zarei, A. and Moghimi, M. M. (2017). Forecasting and Investigation of Average Monthly Temperature Using Time Series Models, Journal of Irrigation and Water Engineering, Seventh Year, No. 25, pp. 142-152. [In Persian]
  37. Zarei, A. Moghimi, M. M. and Mahmoudi, M. R. (2017). Modeling and Prediction of Seasonal Drought Using RDI Index and Time Series Models (Case Study: Tehran Synoptic Station), Journal of Desert Ecosystem Engineering, Volume 5, Number 11, pp. 116-105.[In Persian]
  38. Zarei, A.R. and Moghimi, M.M. (2019). Environmental assessment of semi-humid and humid regions based on modeling and forecasting of changes in monthly temperature. Int. J. Environ. Sci. Technol. 16, 1457–1470, doi:10.1007/s13762-017-1600-z.