پایش دمای سطح زمین و بررسی رابطه کاربری اراضی با دمای سطح با استفاده از تصاویر سنجنده OLI و ETM+ (مطالعه موردی: شهرستان های پارس‌آباد و اصلاندوز)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه جغرافیای طبیعی، دانشگاه محقق اردبیلی، اردبیل ،ایران

2 دانشیار گروه ژئومورفولوژی، دانشگاه محقق اردبیلی، اردبیل ، ایران

3 دانشجوی کارشناسی ارشد سنجش ‌از دور و سیستم اطلاعات جغرافیایی، دانشگاه محقق اردبیلی، اردبیل.

4 دانشجوی دکتری ژئومورفولوژی، دانشگاه محقق اردبیلی، اردبیل.

چکیده

هدف اصلی از این تحقیق پایش دمای سطح زمین با استفاده از تصاویر ماهواره‌ای و رابطه‌ای که دمای سطحی می‌تواند با کاربری اراضی داشته باشد، می‌باشد. ابتدا به منظور بررسی تغییرات کاربری اراضی، نقشه طبقه‌بندی شده کاربری ‌اراضی برای هر دو سال با استفاده از روش طبقه‌بندی شی گرا استخراج شد و سپس به منظور بررسی تغییرات کاربری اراضی نقشه تغییرات کاربری ‌اراضی برای یک بازه زمانی 16 ساله (2018 – 2002) استخراج شد.نتایج نشان داد که رابطه قوی بین کاربری اراضی و دمای سطحی وجود دارد. مناطق با پوشش گیاهی بالا و مناطق آبی دارای درجه حرارت پایین بودند. خاک دارای بالاترین دما در هر دو سال است که دارای دمای 80/40 برای سال 2002 و دمای 29/42 برای سال 2018 می‌باشد. همچنین نکته قابل توجه درباره مناطق مسکونی این است که کاربری مسکونی از 51/34 در سال 2002 به 09/40 در سال 2018 افزایش پیدا کرده است که نشان دهنده این است که درسال 2018 با گسترش شهر نسبت به 18 سال قبل تمرکز حرارت نیز افزایش یافته است. کمترین دمای ثبت شده برای هر دو سال مربوط به مناطق آبی است با توجه به اینکه آب دارای ظرفیت گرمایی بالایی می‌باشد، دارای دمای سطحی کمتری نیز می‌باشد. همچنین نتایج به دست آمده نشان می‌دهد با افزایش مساحت کاربری‌های ‌جنگل و کشاورزی آبی و همچنین با کاهش کاربریهای مرتع و کشاورزی دیم در بازه زمانی مورد مطالعه، دما همچنان روند افزایشی داشته است که میتوان این چنین استنباط کردکه هرچند نواحی دارای پوشش گیاهی متراکم به دلیل تبخیر و تعرق بیشتر دارای دمای سطحی کمتری نسبت به نواحی است که عاری از پوشش گیاهی هستند ولی نتوانسته‌اند به عنوان عامل تعدیل کننده دما در منطقه عمل کنند. بنابراین همبستگی معنی‎داری بین پوشش گیاهی و دمای سطح زمین وجود ندارد که عمدتا ناشی از مقدار کافی پوشش گیاهی است.

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring the land surface temperature and examining the relationship between land use and surface temperature using OLI and ETM+ sensor images (Case study: Cities of ParsAbad and Aslanduz)

نویسندگان [English]

  • Batol Zenali 1
  • Sayyad Asghari saraskanrood 2
  • Maryam Mohamadzadeh Shishegaran 3
  • Ehsan Ghale 4
1 Associatet Professor Climatology, University of Mohaghegh Ardabili
2 Associate Prof. Department of Physical Geography, Faculty of Literature and Humanities, Mohaghegh Ardabili University, Ardabil, Iran
3 Masters Student, Remote Sensing and GIS, University of Mohaghegh Ardabili, Ardabil, Iran.
4 PhD student of Geomorphology, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

Introduction
The land surface temperature is the highest layer of the earth's surface and depends on the level of surface emission, vegetation and the types of ground cover. Earth's surface temperature provides important information about the physical characteristics of the Earth's surface from local and global scales, and plays an important role in many applications. From Earth's surface temperature to study water resources management, agriculture, resource management, drought, environmental geochemical processing, meteorological research, global changes in land surface temperature, weather forecasting, hydrology, ecology, plant status survey, urban climate, studies Environmental and geophysical variables such as evaporation-transpiration and soil moisture are used. In general, temperature measurements at ground level are performed by meteorological stations, including synoptic and climatological. It should be noted that meteorological stations are only able to measure the temperature at specific points that have already been installed there. What is considered to be a major flaw in ground temperature monitoring is the lack of sufficient meteorological stations to know the temperature values in stations without stations, which have been partially remedied today by remote sensing technology. Earth's surface temperature is one of the most important components in global studies, which is used as one of the important factors in controlling the biological, chemical and physical processes of the earth.
Materials & Methods
Moghan plain is located in the northwest of Iran and is subject to Ardabil province and is located in the northern part of the province. ParsAbad Moghan city is a relatively large plain with an area of 143494 hectares, which occupies about 14% of Ardabil area and is the northernmost city of the province. The data used in this study included the Landsat 8 satellite image, which used its OLI sensor to extract land use maps and its TIRS gauge used to extract the Earth's surface temperature for 2018, as well as the ETM + Landsat imager to prepare land use maps. Using visible and infrared bands and surface temperature using thermal bands for 2002. The city's meteorological data were also used to check the temperature recorded by the stations. The ENVI 5.3 software was used for atmospheric and radiometric corrections, and the ARC GIS 10.5 software was used to extract the relevant maps. In order to classify land use, object-oriented classification method was used in eCognition Developer64 software. In object-oriented classification, spectral information is integrated with spatial information, and pixels are segmented based on the shape, texture, and gray tone of the image at a specific scale, and image classification is based on these components.
Results and discussion
The largest area in 2002 belongs to the rangeland class with an area of 58,138 hectares. The second area belongs to the dryland agricultural class, which has the largest area with 52369 hectares. The smallest area belongs to the use of water with 543 hectares. For 2018, rainfed agriculture had the highest area with 41906 and then pasture with 30943 had the highest area. Looking at the uses of 2018, the results show a significant difference that the use of soil has increased from 11143 in 2002 to 30943 in 2018, as well as the use of irrigated agriculture and residential areas and forests. However, the use of irrigated areas has decreased significantly from 543 hectares to 262 hectares, and the use of rainfed and rangeland agriculture has also decreased compared to 2002. The water temperature during 2018 was almost constant and did not differ significantly, and the lowest temperature in both years is 31 degrees. Due to the fact that water has a high heat capacity, water has a lower surface temperature to the soil has the highest temperature in both years with 40.80 for 2002 and 42.92 for 2018. Aquaculture in 2003 was 33.12. C, which in 2018 increased to 34.41. C. The rangeland use has had a high temperature in both years of study and has increased from 38.22 in 2002 to 39.26 in 2018.
Conclusion
In this research, in the first step, in order to classify and then examine the changes that occurred in a certain period of time in the city of ParsAbad, action was taken. For this purpose, in the first stage of this research, in order to classify and record changes in a 16-year period, object-oriented images were classified in eCognition software and in ArcGIS10.5 software, extraction maps were extracted. Was. The classification accuracy in 2000 has a total accuracy of 0.90 and a coefficient of 0.87. While the classification in 2018 with an overall accuracy of 92% and a Cape coefficient of 0.90 has provided a relatively higher accuracy. After classification, an attempt was made to examine the changes that occurred in the region over a 16-year period, and a map of land use changes was drawn up for the area under study. Land surface temperature is one of the main parameters in the study of cities. Because it is almost the same as the air temperature in the lower layers of the city, which is the energy balance of the surface and determines the climate between the buildings and affects the life and comfort of the urban residents. Soil use has the highest temperature in both years with 40.80 for 2002 and 42.92 for 2018. Also noteworthy about residential areas is that residential use has increased from 34/51 in 2002 to 40/09 in 2018, which indicates that in 2018, with the expansion of the city compared to 16 years ago, the heat concentration will also increase. Increased. This use is due to the presence of man-made and heat-absorbing factors such as asphalt, concrete, the existence of various machinery and factories, as well as the creation of tall buildings that prevent heat from escaping around and prevent wind from moving into the city.

کلیدواژه‌ها [English]

  • object-oriented classification
  • Split window algorithm
  • land surface temperature
  • land use
  • Landsat images
  1.  

    1. Ahmadi, M., Ashurlu, D., and Narangi Fard, M., 2012, Temporal-spatial changes of thermal and applied patterns of Shiraz city using TM and ETM measuring data. Remote sensing and GIS of Iran, 4(4): 55_68.
    2. Akbari, E., Ebrahimi, M., Fiezizadeh, B., and Nezhadsoleimani, H., 2016, Evaluating Land Surface Temperature related to the Land use Change Detection by Satellite Image (Case study: Taleghan Basin). Geography and Environmental Planning, 26(4): 151-170.
    3. Alavi Panah, K., 2009, Thermal Remote Sensing and its Application in Earth Sciences. Second Edition, Tehran, University of Tehran Press.
    4. Amini Bazyani, S., Zare Abyaneh, H., and Akbari, M., 2014, Estimation of Surface Temperature and Cropping Intensity in Hamedan Province Using Remote Sensing Data. Physical Geography Research Quarterly, 46(3): 333-348.
    5. Asghari, S., and Emami, H., 2019, Monitoring the earth surface temperature and relationship land use with surface temperature using of OLI and TIRS Image. Researches in Geographical Sciences, 19(53): 195-215.
    6. Ashraf, , Faridbhosseini, A., and Mianabadi, A., 2012, The Investigation of Mashhad’s Heat Island Using Satellite Images and Applying Fractal Theory. GEOGRAPHY AND ENVIRONMENTAL HAZARDS, 1(1): 35-48.
    7. Darvishi, S., rashidpour, M., and soleimani, K., 2019, Analysis of Land Use Role in the Formation of Thermal Islets of Marivan County Using Landsat Satellite Images. Geography and Development Iranian Journal, 17(54): 143-162.
    8. Darvishi, S., Soleimani, K., and Rashidpour, M., 2019, Impact of vegetation indices and urban surface characteristics on land surface temperature changes (Case study: Sanandaj city). Journal of RS and GIS for Natural Resources, 10(1): 17-35.
    9. Faizizadeh, B., and Hilali, H., 2010. Comparison of base pixel, object-oriented and effective parameters in land use coverage classification in West Azarbaijan Province. Geographical Research Journal, 71: 73_84.
    10. Farhanj, F., and Akhoondzadeh, M., 2017, Fusion of _8 Thermal Infrared and Visible Bands with Multi-Resolution Analysis Contour let Methods. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 77-81.
    11. Kakeh Mami, A., Ghorbani, A., Kayvan Behjoo, F., and Mirzaei Mosivand, A., 2017, Comparison of visual and digital interpretation methods of land use/cover mapping in Ardabil province. Journal of RS and GIS for Natural Resources, 8(3): 121-134.
    12. Karenia, C.NS.G., 2016, spatial Geotechnologies and Gis tools for urban planners applied to the Analysis of urban heat island case caracas citevenezuela. 9 th lnternational Conference on Urban Climate jointly with 12 th symposium on the urban Environment, 1-5.
    13. Kaviani, A., Sohrabi, T., and Daneshkar Araste, P., 2013, Estimation of land surface temperature using NDVI in MODIS and Landsat ETM+ imageries. Journal of Agricultural Meteorology, 1(1): 14-25.
    14. Lu, , and Weng, Q., 2008, A survey of image classification methods and techniques for improving classification performance.
    15. Moradi, M., Salahi, B., and Masoodian, S., 2016, Analysis of land surface temperature gradient of Iran using MODIS Terra and Aqua data. Physical Geography Research Quarterly, 48(4): 517-532.
    16. Pijanowski, B.C., Brown, D.G., Shellito, B.A., and Manik, G.A., 2002, Using neural networks and GIS to forecast land use change; A Land Transformation Model. Computers Environment and Urban Systems, 26: 553-575.
    17. Qin, Z., Karniel, A., and Berliner, P., 2001, A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22: 3719–3746.
    18. Ronald, C., Estoque, M., and Yuji, M., 2017, Effects of landscape Composition  and pattern on  land surface temperature An urban heat island  study in  the megacities of Southeast  National Library  of Medicine, 15(577): 349-359.
    19. Rozensten, O., Qin, Z., Derimian, Y., and Karnieli, A., 2014, Derivation of land surface temperature for landsat – 8 TIRS using a split window algorithm. Sensor, 4(14): 5768-5780.
    20. Shi, Y., Katzschner, L., Ng, E., 2017, Modelling the fine- scale spatiotemporal pattern of urban heat island effect using land use regression approach in a megacity. Science of the Total Environment, 618(15): 891-904.
    21. Valizadeh Kamran, K., Gholamnia, K., Eynali, G., and Moosavi, M., 2017, Estimation land surface temperature and extract heat islands using split window algorithm and multivariate regression analysis (Case Study of Zanjan). Research and urban planning, 8(30), 35-50.
    22. Wang, Y., Ch, B., Hu, s.w., Myint, Ch., feng, Ch., Chow, W.T.L., and Passy, P.F., 2018, Patterns of land change and their potential impacts on land surface temperature change in Yangon Myanmar. Science of the Total Environment, 643: 738-750.
    23. Zhong, X., Huo, X., Ren, C., Labed, J., and Li, Z, L., 2016, Retrieving Land surface temperature from hyperspectral thermal infrared data using a multi-channel method. Sensors, l5(16): 671-687.
    24. Thyer, M. A, A. Y. Forst and G. akuczera (2006) parameterestimation and modelidentificotion for stochastic models of annuel hydrolojical data: is the observed record, lonj enoujh. Journal of hydrology. volnes 330. issues 1-2, 313-327.
    25. skiris, G. vanjelis.H (2004) towared sadrought watch system based on spatial SPI. water resources manajment, 18:1.