بررسی pH، کل مواد جامد محلول، هدایت الکتریکی، قلیاییت کل وسختی کل آب بارش در شهر تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه فیزیک، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد دانشگاه آزاد اسلامی واحد علوم و تحقیقات

3 دانشیار سابق(بازنشسته) هواشناسی دانشگاه تهران، تهران، ایران

چکیده

این پژوهش در طی سال‌های 1391،1392 و 1394 و برای دو ایستگاه هواشناسی اقدسیه و مهرآباد شهر تهران انجام گرفته است. سختی کل، pH، قلیاییت کل،هدایت الکتریکی (EC) و کل مواد جامد محلول (TDS)، 30 نمونه‌ی آب بارش، اندازه گیری شدند. در این مقاله از اندازه گیری غلظتگازها و ذرات معلق شرکت کنترل کیفیت هوای تهران و نیز مقادیر سرعت اصطکاکی و باد در ارتفاع 10 متری که از خروجی مدل عددیWRF  بدست آمده اند نیز کمک گرفته شده است. نتایج نشان می‌دهند که، بارش‌ها در فصل‌های پاییز و زمستان بدلیل افزایش غلظت گازهای  و  و وقوع وارونگی در جو اسیدی و دراواخر فصل زمستان، فصل بهار و فصل تابستان بدلیل ازدیاد هواویزهای گرد و خاک در جو قلیایی بودند. پایین ترینpH در ایستگاه مهرآباد (6/4)  بدست آمده است. نتایج سرعت اصطکاکی،TDS،EC و قلیاییت کل نیز فرسایش خاک قبل از وقوع بارش‌ها در فصل بهار و تابستان را تصدیق می‌کنند. نوع سامانه، جهت گردش‌های بزرگ مقیاس، عمق لایه آمیخته، منابع آلاینده های محلی، وجود وارونگی دما، مقدار و جهت سرعت باد و خصوصیات جغرافیایی منطقه مورد مطالعه، از عوامل بسیار مهم و تاثیر گذار بر روی کیفیت آب بارش در شهر تهران به شمار می‌روند.

کلیدواژه‌ها


عنوان مقاله [English]

The study of pH, Total Dissolved Solids (TDS), Electrical Conductivity (EC), Total Alkalinity and Total Hardness of rain water over Tehran city

نویسندگان [English]

  • dina abdemanafi 1
  • amirhossein Meshkatee 2
  • Sohrab Hejam 3
1 Department of physic, North Tehran branch, Islamic Azad University, Tehran, Iran.
2 Professor of Islamic Azad University, Science and Research Branch
3 Associate Prof., Trhran University
چکیده [English]

Precipitation is one of the most efficient mechanisms for washing the atmospheric pollutants, specifically particulate ones out. The process has two very important consequences (one good and one bad).  The good one is that it clears atmosphere from many substances that have adverse impacts on many aspects of life whereas the bad one is that their reaction with rain water leads to the formation of some dangerous and destructive substances that have great impacts on both, the natural environment as well as manmade constructions.  Precipitation chemistry plays an important role in understanding the air quality in a study area, because the concentrations and distribution of chemical components in rain depend on a variety of emission sources. Realizing that, a lot of effort has been made in order to identify the nature and type of those particulates, especially in urban environment. Study upon the atmospheric pollutants and their nature in Tehran atmosphere goes back to 1991, when Ismaeili Sari, initially attempted to identify the nature of atmospheric pollutants over Tehran by sampling rain waters from  synoptic and climatology stations (also, he did the same research for one station in Tehran. The results for two researches have shown and also compared with present study in the section of results and discussion. Tehran city located in central part of the Alborz Mountain Range and characterized by its complex topography and diverse climate in an area of about 700 Km2. In this article, two Mehrabad and Aghdasiyeh synoptic stations were selected for rain water sampling. Aghdasieh synoptic station started to work in 1988 and is located in the northeast of Tehran, the area with highest annual average of precipitation among other areas of the city. According to Iranian Meteorological Organization records, the annual average of precipitation in this area is 420mm. Mehrabad synoptic station is the oldest meteorological station of the city that started to work in 1951 and is located in Mehrabad airport at the west of Tehran.  Recent years observations indicate that some unprecedented behavior in the city’s precipitation regime has occurred. The city fast growth of population, area, industrial activities and the number of motor vehicles alongside with substantial changes in the constructions from horizontal to vertical, has Considered responsible to that observed changes. Accordingly, to do that 30 rainwater samples from two Mehrabad and Aghdasieh synoptic stations (15 samples from each station) collected during the autumn and winter of 2012 and spring and summer of 2013 and 2015. During the examination of the chemical properties of the collected samples rain water total hardness, total dissolved solids (TDS), PH, total alkalinity and electrical conductivity (EC). Measured PH showed that autumn and winter precipitation were acidic while the springs' were mostly alkaline.  Dust highest concentration in spring and summer may be the main reason for rain water alkalinity and higher TDS, EC, and hardness relative to the winter samples. In order to analyze the causes of acid and alkaline precipitation were measured Concentrations of gases and aerosols (SO2,NOx, PM10 and PM2.5) Air Quality Control Company of Tehran and the friction velocity values obtained from the output of the numerical model WRF also taken. The results show that rainfall in autumn and winter seasons were acidic because of the increased concentration of gases in the atmosphere (SO2 and NOx) and inversion. In late winter and early spring due to increasing alkaline dust in the atmosphere precipitation were alkaline. Acidity of rain waters was higher in Mehrabad samples (with minimum amount of 4.6).The pH ranged from 4.6 to 8.1 with a mean of 6.3. Results show that in Aghdasieh the lowest measured pH was 4.72 and the highest was 7.95.  The highest calculated Alkalinity was 33.58ppm.  The same studies for Mehrabad indicate that the lowest and highest measured pH were 4.61 and 8.12, respectively.  Again, the highest calculated Alkalinity was 40ppm.  EC, TDS and Total Hardness were slightly higher at Mehrabad than Aghdasieh. They were 135μs/cm, 110ppm, and 57.95ppm in Aghdasieh and 195μs/cm, 130ppm, and 76.01ppm in Mehrabad, respectively. The results have shown the friction velocity, TDS, EC, and alkalinity of the soil erosion occurring before the spring rains. System type, the large-scale circulation, mixed layer depth, local pollution sources, the inversion temperature, wind speed and direction and the geographical features of the region, the important factors affecting the pH precipitation in Tehran considered.

کلیدواژه‌ها [English]

  • pH
  • TDS
  • EC
  • Total Alkalinity
  • Total Hardness
  1.  

    1. Ahadi, S., Najafi, M.A., Roshani, M., 2011, Annual report on air quality in Tehran       in1390,Technical Report on Air Quality Control, Monitoring and Research Unit, QM91/02/06(U)/01.
    2. Ahadi, S., Najafi, M.A., Roshani, M., 2012, Annual report on air quality in Tehran in1390,Technical Report on Air Quality Control, Monitoring and Research Unit, Q M92/03/03/(U)/01.
      1. Britter, R,. Hanna, S, 2003, Flow and dispersionin urban areas. Annu Rev Fluid Mech., 35,469-496.
      2. Chune, S., Xueliang, D., Yuanjian, Y., Xiangrong, H., Biwen, W., 2014. Precipitation Chemistry and corresponding Transport Patterns of Influencing Air Masses at Huangshan Mountain in East China. ADV. IN ATMOS.  SCI. 31, 1157–1166.
      3. Desonie, d., 2007. Atmosphere air pollution and its effects. Chelsea house. Printed in the United States of America. P. 208.
    3. Esmaili Srai, A., 1991. Atmospheric parameters and air pollution over Tehran. Ir. of Iran Meteorological Organization.
    4. Esmaili Srai, A., 1997. Impact of the Kuwait war over ecosystems of Iran, especially Khozestan. Ir. of Iran Meteorological  Organization.
    5. Fersinius, W. (2001). Water analysis. Translated by Taghvaeipour, A.,. Arak University Press.
      1. Galloway, J.N., Likens G.E., Edgerton, E.S., 1976. Acid precipitation in thenortheastern United States; pH and acidity. Science 194, 722–724.
    6. Ganji Doost, H., (2003). Preparation and compilation of executive instructions for rainwater analysis. Tehran Meteorological Organization of Iran.
      1. Gillete, D., Dams, J., Muhs, D., Kihl, R., 1982. Threshold Friction Velocities and Rupture Moduli for Crusted Desert Soils for the Input of Soil Particles into the Air. Journal of Geophysical Reserch, Vol. 87, NO. Cll, Pages 9003-9015, October 20, 1982.
      2. Glossary of meteorology, 2012. (http://glossary.ametsoc.org/).
      3. Hu, G.P., Balasubramanian, R., Wu, C.D., 2003a. Chemical characterization of rainwater at Singapore. Chemosphere 51, 747–755.
      4. Hu, Z., Wang, J., Chen, Y., Chen, Z., Xu, S., 2013b. Concentrations and source apportionment of particulate matter in different functional areas of Shanghai, China. Atmospheric Pollution Research, 5, 138‐144.
      5. Huang, K., Zhuang, G., Xu, Ch., Wang, Y., Tang, A., 2008. The chemistry of the severe acidic precipitation in Shanghai, China. Atmos. Res. 89, 149-160.
      6. In precipitation chemistry at Hubbard Brook, New Hampshire. Atmos. Environ. 18, 2641-2647.
    7. Investigation of acidity and electrical conductivity in Tehran precipitations (2008), Atmospheric Science and Meteorological Research Center, Meteorological Department of Tehran Province.
      1. Ishizuka, M., Mikami, M., Yamada, Y., Zeng, F., 2009. Threshold Friction Velocities of Saltation Sand Particles for Different Soil Moisture Conditions in the Taklimakan Desert. SOLA, 2009, Vol. 5, 184-187, doi:10.2151/sola.2009-047.
      2. Jain, M., Kulshrestha, U., Sarkar, A., Parashar, D., 2000. Influence ofcrustal aerosols on wet deposition at urban and rural sites in India.Atmospheric Environment 34, 5129–5137.
      3. Keresztesi, A., et al, 2019. Assessing the neutralization, wet deposition and source contributations of the precipitation chemistry over Europe during 2000-2017. Environmental Sciences Europe, 31, 2-15.
      4. Khayan, Kh. et al, 2019. Rainwater as a source of drinking water: health impacts and rainwater treatment. Journal of environmental and public health, hindawi, 1-10.
      5. Kulshrestha, U.C., Kulshrestha, M.J., Sekar, R., Sastry, G.S.R., Vairamani, M., 2003b. Chemical characteristics of rainwater at an urban site of southcentralIndia. Atmos. Environ. 37, 3019–3026.
      6. Kulshrestha, U.C., Sarkar, A.K., Srivastava, S.S., Parashar, D.C., 1995a. Wet-only and bulk deposition studies at New Delhi (India).Water, Air and Soil Pollution 85, 2137–2142.
      7. Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton, and R. E. Munn, 1984. Long-term trends
      8. Palma, o., Kristijan, v., Irena, C., Dario, O., Mathieu, D., Ivan, S., 2020. Physico-chemical characterization of urban Rainwater. Atmosphere, 11, 2, 144.
      9. Perrie, W., Wang, L., 1995. On the overdetermination of friction velocity. American meteorological society. Sep 1995.
    8. Peykari, M., Mehrabani, A., (2004). Basics of water purification. Arkan Publications.
      1. Pitts, J. N., Jr., H. W. Biermann, A. M. Winer, and E. C. Tuazon, 1984. Spectroscopicidentification and measurement of gaseous nitrous acid in dilute auto exhaust. Atmos.Environ. 18, 847-854.
    9. Sabet ghadam, S., Ahmadi Givi, F., AliAkbariBidokhti, A., (2009).  Studying the fluctuation of mixed layer height of Tehran, using MM5 modeling system. Journal of Earth and Space Physics, No. 2, pp. 105-117.
      1. Safai, P.D., Rao, P.S.P., Momin, G.A., Ali, K., Chate, D.M., Praveen, P.S., 2004.Chemical composition of precipitation during 1984–2002 at Pune, India.Atmos. Environ. 38, 1705–1714.
      2. Seqheira, R., Lai, C., 1998. Small-scale spatial variability in therepresentative composition of rainwater within urban HongKong. Atmospheric Environment 32, 133–144.
    10. Sobhani, Sh., Keirdosh, F., (2006). Laboratory principles of water and wastewater. Razi University and TaghBostan press.
      1. Tang, A., Zhuang, G., Wang, Y., Yuan, H., Sun, Y., 2009. The chemistry of precipitation and its relation to aerosol in Beijing. Atmos. Environ. 39, 3397–3406.
      2. Tiwari, s., Kulshrestha, U.C., Padmanabhamurty, B., 2007. Monsoon rain chemistry and source apportionment using receptor modeling in and around National Capital Region (NCR) of Delhi, India. Atmos. Environ. 41, 5595–5604.
      3. Warneck, p., 2000. Chemistry of the Natural Atmosphere. Second Edition, Acdemic press. P. 947.