مروری بر مکانیسم الگوهای سینوپتیکی ناوه دریای سرخ (RST) و اثرش بر بارش‌های ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه آب و هواشناسی، دانشگاه تهران

2 دانشجوی دکتری آب و هواشناسی- دانشگاه تهران

3 دانشجوی دکتری آب و هواشناسی، دانشگاه تهران

چکیده

کم فشار سودان یکی از سامانه‌های موثر بر بارش ایران  می باشد که در Fر آب و هوای ایران تاثیر گذار است. این سامانه با نام هایی چون کم فشار سودان، ناوه یا فرود دریای سرخ و در منابع بین المللی به عنوانRST[1]  نام برده می شود. در این پژوهش ابتدا پیشنه‌ای از مطالعات انجام شده در خصوص این سامانه و ویژگی های آن ارائه شده است و سپس با استفاده از داده‌های شبکه بندی مرکز اروپایی پیش‌بینی‌های میان مدت جوی[2] سری (ERA-Interim) و بارش مشاهداتی، پارامترهای موثر در شکل‌گیری RST ها شامل کشیدگی ناوه دریای سرخ، پرفشار عربستان، ناوه سطوح بالایی عرض‌های میانه، جت جنب حاره، انتقال رطوبت از دریاها و ناپایدارهایی تروپسفریک در دو رخداد فعال ناوه دریای سرخ[3] ARST در نوامبر 2011 برای جنوب غرب ایران و نوامبر 2009 در جنوب غرب عربستان مورد تحلیل و مقایسه قرار گرفته است.  نتایج بررسی انجام شده نشان داد موقعیت شکل گیری ناوه دریای سرخ و پشته عربستان به عنوان دو عنصر جنب حاره ای تاثیر گذار و همچنین خصوصیات ناوه سطوح میانی جو ، جت جنب حاره و مسیرهای انتقال رطوبت میتوانند در هر یک از ARST های مورد بررسی، نسبت به دیگری تا اندازه ای متفاوت باشند. و گاهاً این اختلاف‌ها می تواند بصورت الگویی منحصر بفرد برای هر یک از ARST ها  مطرح گردد.



2. Red Sea Trough ( RST)


[2]. ECMWF


[3]. Active Red Sea Trough (ARST)

کلیدواژه‌ها


عنوان مقاله [English]

A review on the Mechanism and synoptic patterns of the Red Sea Trough (RST) and its effects on Iran's precipitations

نویسندگان [English]

  • Ghasem Azizi 1
  • Elaheh Ghasemi Karakani 2
  • Naser Ezadi 3
1 Associate Professor in Physical Geography(climatology),Faculty of Geography,University of Tehran
2 Ph.D. Student, University of Tehran, Iran
3 Ph.D. Student, University of Tehran, Iran
چکیده [English]

1- Introduction
The RST is a large-scale subtropical–tropical thermal low-pressure and synoptic system regarded to an extension of the African monsoon trough, northward over the Red Sea region toward the Eastern Mediterranean (El-Fandy 1948; Vries et al, 2013). The RST is attributed to the local topography and thermal forcing factors (Krichak et al., 1997a). Synoptically, the position of the RST is strongly influenced by the Siberian and Azores high systems (Baseer et al., 2019). The RST is associated with hot and dry weather, resulting from an East-Southeasterly flow in the lower troposphere. Such conditions correspond to a ‘‘nonactive’’ RST (Kahana et al. 2002). In some cases, the RST is investigating to be accompanied by an upper-tropospheric trough extending from the north over the EM. These conditions are associated with unstable stratification, favoring the development of mesoscale convective systems. This kind of RST has been defined as an ‘‘active’’ RST (Tsvieli and Zangvil 2005). ARST events usually lead to reasonably intense precipitation over the eastern Mediterranean; in some rare situations, they are associated with heavy, torrential rains and devastating floods. It can occur in late autumn and to a lesser incidence in early winter and spring. The ARST is a rare climate phenomenon that is the main cause of floods in the arid and semi-arid region of eastern and southern of Mediterranean (Kahana et al. 2004; Krichak et al., 2012; Vries et al, 2013). Some researches show the ARST preference for autumn by coinciding favorable latitudinal positions of the African Monsoon and the subtropical jet (STJ) stream (Dayan et al. 2001). Based on Conceptual model of ARST and algorithm for its identification by Krichak et al., 2012, According to the new algorithm for ARSTs, the occurrence of ARST events is defined to have taken place when:The CAPE or PRWT exceed particular threshold values over a target area that covers the EM (28°–32°N, 32°–38°E).
1) A northward-oriented 1000-hPa trough (H1000) extends from northeastern Africa to the EM within a target area of (22.5°–32.5°N, 25°–45°E).
2) A mid-tropospheric 500hPa trough is detected over one of the following two target areas (25°–30°N,158–35°E or 30°–35°N, 25°–40°E).
The ARST is associated with extreme precipitation, in the Middle East (ME) and some region in the west and southwest of Iran. Generally, it causes flood events in some years, many studies, focused on these cases and most of them explained western cyclones and RST are the main cause of them. On 25 November 2009, Jeddah (Saudi Arabia) was dramatically hit by heavy precipitation and consequent flash floods and on 21 November, 2011this event occurred in Lilac-Behbahan. In this research attempted extract difference between these two ARST synoptic patterns also, we review previous literature addressing ARST associated dynamics.
Data and Methods
We tried to investigate the extreme precipitation events over the Jeddah region on 25 November 2009, southwestern Iran (Lilac-Behbahan) on 21 November 2011. To perform this research, we used ERA-Interim reanalysis data and precipitation observations. 6-hourly gridded data from the multiyear dataset of the European Center for Medium-Range Weather Forecasts (ECMWF- ERA-Interim) are employed for 2009 and 2011. We utilize the daily mean and 6 hourly analysis and forecasted variables at pressure and surface levels, as well as vertically integrated quantities derived from pressure levels. The ERA-Interim data are available for the entire globe with 0.5˚ * 0.5˚ spatial resolution and 6-h temporal resolution. Precipitation observational data from stations of Iran are collected from Meteorological Organization and data of 30 stations of Saudi Arabia are available via http://www.meteomanz.com. We followed these ARST events by these dynamical factors (de Vries et al., 2013):
1) A low-level trough; the Red Sea Trough (RST).
2) An anticyclone over the Arabian Peninsula; the Arabian Anticyclone (AA).
3) A transient midlatitude upper trough.
4) An intensified subtropical jet stream.
5) Moisture transport pathways, and
6) Strong ascent resulting from tropospheric instability and the synoptic-scale dynamical forcing.
2- Result and Discussion
The result shows the spatial extent of Arabian Anticyclone is one major reason for the distribution of precipitation in Saudi Arabia and the southwest of Iran. Also, the position of the axis of upper trough and its rotation is another reason and it's oriented to lower latitude, as whatever southward leading of upper trough to lower latitude is greater and wavelength of the trough is more, accordingly, the possibility of precipitation increased in Saudi Arabia. Moreover, the location of a stream jet can be effective on extreme precipitation. On the other hand, a streak of subtropical jet extended southeast of upper trough, and this status is so significant.

کلیدواژه‌ها [English]

  • Red Sea Trough
  • Synoptic
  • Precipitation
  • Iran
  • Saudi Arabia
  1.  

    1. Almazroui, M., Awad, A. M., Islam, N. M., Al-Khalaf, A. K., 2015. A climatological study: wet season cyclone tracks in the East Mediterranean region. Theor. Appl. Climatol. 120, 351–365. http://dx.doi.org/10.1007/s00704-014-1178-z.
    2. Asakreh, H. ., Ghaemi, H., Rezaie, Sh. 1395. Review mechanism of expansion and low pressure Red Sea. Geographical Planning of Space, 6(21), 77-90.
    3. Awad A. M and M. Almazroui, 2016.  Climatology of the winter Red Sea Trough, Atmospheric Research 182.(2016) 20–29. http://dx.doi.org/10.1016/j.atmosres.2016.07.019.
    4. Balyani S, saligheh M.1395. The Analysis and Extraction of Daily Heavy Rainfall Lead Atmospheric Patterns in Northern Portion of Persian Gulf (Helle and Mond Subbasin). Jsaeh. 2016; 3 (2):79-98, URL: http://jsaeh.khu.ac.ir/article-1-2563-en.html.
    5.  Baseer ., M.N, Awad, A.m. and Almazroui, M. 2019. Climatology of the spring Red Sea Trough, International Journal of Climatology, DOI: 10.1002/joc.6069.
    6. De Vries, A. J., Feldstein, S. B.,   Riemer, M.,   Tyrlis, E., Sprenger, M., Baumgart, M., Fnais, M. and J. Lelieveld. 2016. Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring, Royal Meteorological Society, Q. J. R. Meteorol. Soc. 142: 1862–1880, April 2016 B DOI:10.1002/qj.2781
    7. De Vries, A.J., Tyrlis, E., Edry, D., Krichak, S.O., Steil, B., Lelieveld, J., 2013. Extreme precipitation events in the Middle East: dynamics of the Active Red Sea Trough. J. Geophys. Res. Atmos. 118, 7087–7108. http://dx.doi.org/10.1002/jgrd.50569.
    8. Ghaedi, S., Movahedi, S., Masoodian, A. 1391. The Relation between the Red Sea Trough and Heavy Precipitation in Iran. Geography and Sustainability of Environment, 2(2), 1-18.
    9. Hannachi, A., Awad, A., Ammar, K., 2011. Climatology and classification of Spring Saharan cyclone tracks. Clim. Dyn. 37, 473–491.  http://dx.doi.org/10.1007/s00382-010-0941-9.

    10. Kahana, R., B. Ziv, Y. Enzel, and U. Dayan, 2002: Synoptic climatology of major floods in the Negev desert, Int. J. Climatol., 22, 867–882.

    11. Kahana, R., Ziv, B., Dayan, U, and Y., Enezel. 2004. Atmospheric predictors for major floods in the Negev desert, Int. J. Climatol. 24: 1137–1147 (2004), DOI: 10.1002/joc.1056.

    12. Karami, F., Shiravand, H., Dargahyan. F.1389. Synoptic pattern of flood in Paleokhtar city in February 2005, Journal of Geography and Environmental Studies, 4.

    13. Khoshakhlagh, F., Safaierad, R., Salmani, D. 1393. The Synoptic analysis of flood occurrence on November 2011 in Behbahan and Likak cities. Physical Geography Research Quarterly, 46(4), 509-524. Doi: 10.22059/jphgr.2014.53001.

    14. Krichak SO, Breitgand JS, Feldstein SB. 2012. A conceptual model for the identification of the Active Red Sea Trough synoptic events over the southeastern Mediterranean. J. Appl. Meteorol. Clim. 51: 962–971.

    15. Krichak, S., Alpert, P., and Krishnamurti, T. N. 1997a. Interaction of topography and Tropospheri flow– pressure systems Sudanese floodcausing precipitation in Iran, Geographical Research Quarterly, 77.

    16. Krichak, S. O., Breitgand, J. S., Feldstein, S. B., 2012. A conceptualmodel for the identification of Active Red Sea Trough synoptic events over the southeastern Mediterranean. J. Appl. Meteorol. Climatol. 51, 962–971. http://dx.doi.org/10.1175/JAMC-D-11-0223.1

    17. Lashgari, H., Khalilian, V. 1391. Synoptic Analysis of Rainy Zone of Sudan-Mediterranean Merged System on Iran. Scientific- Research Quarterly of Geographical Data (SEPEHR), 21(84), 21-34.

    18. Lashkari, H. 1375. Synoptic patterns of heavy rainfall in south and southwest Iran, Ph. D thesis, TarbiatModarres University, Department of Geography.

    19. Lashkari, H. 1381 .Mechanism of Development, Reinforcement and Development of Sudan Low Pressure Center and its Role on Precipitation in the South and Southwest, Iran. GEOGRAPHICAL RESEARCH QUARTERLY, Volume & Issue: Volume 39, Issue 0 - Serial Number 1427, February 2001. 

    20. Lashkari, H. 1381.Routing of Sudanese low pressure systems to Iran, Journal of the Teacher of Humanities, (25), 133-156.

    21. Lashkari, H., Ghaemi, H. 1380. Synoptic Investigation of the Development, Reinforcement and Development of Sudanese Low-Pressure Effects on Iran - Report - Iranian Meteorological Organization.

    22. Mofidi, A. 1383. Synoptic climatology of torrential rain falls originating from Red Sea region in Middle East, Geographical Research Quarterly, Vol. 75, pp. 71-93.

    23. Mofidi, A., and Zarin, A. 1384.a.To investigate the influence of synoptic low pressure systems Sudanese flood-causing precipitation in Iran, Geographical Research Quarterly, 77.

    24. Mofidi, A., Zarrin, A. 1384.b. Synoptic Analysis of the Nature of Sudan Low Pressure Systems (Case Study: December 2001 Storm). Territory, 2(issue 6), 26-50.

     

    25. Pinto, J.G., Spangeh, T., Ulbrich, U., Speth, P., 2005. Sensitivities of cyclone detection and tracking algorithm: individual tracks and climatology. Meteorol. Z. 14, 823–838.

    26. Sabziparvar, A. A., Parandeh, A., Lashkari, H.  And H. Yazdanpanah. 2010. Mid-level synoptic analysis of flood-generating systems in Southwest of Iran (case study: Dalaki watershed river basin). Hazards Earth Syst. Sci., 10, 2269–2279, 2010. Doi: 10.5194/nhess-10-2269-2010.

    27. Tsvieli Y, Zangvil A. 2005. Synoptic climatological analysis of ‘wet’ and ‘dry’ Red Sea Troughs over Israel. Int. J. Climatol. 25: 1997–2015.

    28. Ziv B, Dayan U, Sharon D. 2005. A mid-winter, tropical extreme floodproducing storm in southern Israel: Synoptic scale analysis. Meteorol.Atmos. Phys. 88: 53–63.