بررسی رفتار حرارتی دوره OHP بناهای مسکونی خاک‌پناه در میمند کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه معماری، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران

2 استادیار دانشگاه علم و صنعت ایران، دانشکده معماری و شهرسازی

3 گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران.

چکیده

با توجه به این­که آسایش حرارتی در مسکن روزمینی عموماً از طریق تجهیزات مکانیکی تامین می­شود، شناخت میزان آسایش حرارتی در بناهایزیرزمینی و خاک­پناه- که در آن از هیچ­گونه وسیله مکانیکی استفاده نمی­شود-، ضرورت می­یابد. لذا در این مقاله چگونگی رفتار حرارتی بناهای خاک­پناه در روستای میمندکرمان به عنوان مساله اصلی مطرح شد. بدین منظور تاثیر متغیرهای معماری و اقلیمی بناهای خاک­پناه میمند بر چگونگی رفتار حرارتی، هدف اصلی پژوهش تلقی گردید. سوالاصلی اینست که بناهای مسکونی خاک­پناه میمند چه نوع رفتار حرارتی در دوره  OHp (دوره گرم سال) از خود نشان می­دهند که برای پاسخ به آن، از روش پژوهشموردی بهره گرفته شد. بناهای مسکونی خاک­پناه در روستای میمند بصورتی انتخاب شدند که نماینده کل جامعه آماری باشد. این پژوهش با استفاده از اندازه­گیری­های میدانی در پی شناخترفتار حرارتی بناهای مسکونی خاک­پناه روستای میمند می­باشد و اندازه­گیری­ها در روزهای 11، 12و 13 مرداد سال 1398 به عنوان نماینده دوره گرم سال انجام شد. متغیرهای اقلیمی دمای­هوا و رطوبت­نسبی در بناهای خاک­پناه توسط دستگاه ثبت داده، اندازه­گیری و همچنین از ایستگاه همدید شهر بابک برای اطلاعات اقلیمی روستای میمند کمک گرفته شد. اطلاعات بدست آمده توسط دستگاه ثبت داده با استفاده از شاخص آسایش حرارتی گیونی مورد بررسی و تحلیل قرار گرفت. در نمودار زیست­اقلیمی گیونی، محدوده آسایش حرارتی توسط متغیرهای درجه­حرارت و رطوبت­نسبی محدود شدهاست. در نهایت نتایج این پژوهش نشان داد که رفتار حرارتی تمامی بناهای خاک­پناه میمند در دوره گرم سال بسیار مطلوب بوده و بیشینه آسایش حرارتی مربوط به بناهایی است که دارایبیشترین نفوذ در عمق خاک، شاکله دو اتاقی (دو اتاق پشت سر هم)، جهت­گیری جنوبی و جنوب شرقی نسبت به تابش خورشید و  قرارگیری در تراز ارتفاعی میانی توپوگرافی می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Thermal Behavior of the OHP Period of Earth-Sheltered Buildings in Meymand of Kerman

نویسندگان [English]

  • Amirreza Khaksar 1
  • Seyed-Majid Mofidi-Shemirani 2
  • Mahmoud Nikkhah-Shahmirzadi 3
1 Department of Architecture, Semnan Branch, Islamic Azad University, Semnan, Iran.
2 Assistant Professor Iran University of Science & Technology, Faculty of Architecture and Urbanism.
3 Civil Engineering Department ,Semnan Branch, Islamic Azad University, Semnan, Iran.
چکیده [English]

Introduction
Since thermal comfort in day-to-day housing is generally provided by mechanical equipment, it is necessary to know the degree of thermal comfort in underground and earthsheltered - where no mechanical means are used. Find out. In this paper, the main issue is how the thermal behavior of Earth Sheltered buildings in the village of Meymand Kerman. The ancient village of Meymand is located 38 km northeast of Babak city of Kerman province. The latitude of the village is 30 degrees north and 13 minutes north and 55 degrees 25 minutes. It is also 2240 meters above sea level. The main purpose of this study was to investigate the influence of architectural and climatic variables on the thermal behavior of Meymand Earth Sheltered buildings. The key question is what kind of thermal housing exhibits thermal behavior during the OHP (warm year) period, and which Earth sheltered buildings exhibits better thermal behavior.
Materials and methods
 The research method in this article is case study, and the earth sheltered residential buildings - as a case study - in Meymand village are selected to represent the whole statistical population. Therefore, the aforementioned buildings are divided into 4 categories A, B, C and D based on the type of sunlight orientation, altitude position on the slope of the mountain, type of shape and depth of penetration. Finally, out of the approximately 2,500 rooms (8 buildings), 8 Earth Shelterd Buildings representing most of the existing buildings in Meymand are selected as a case study. This study aims to identify the thermal behavior of residential buildings in Meymand village using field measurements. The measurements are performed on the 2th, 3th and 4th of August 2019 as representative of the warm period of the year. Climatic variables of temperature and relative humidity in earth shelterd buildings are measured by a data logger. It is also assisted by Babak City Synoptic Station to obtain climatic information from the village of Meymand. The data obtained by the data logger are analyzed and analyzed using the Givoni thermal comfort index. In the Givoni bioclimatic diagram, the range of thermal comfort is constrained by the variables of temperature and relative humidity.
Results and discussion
The results of comparing the thermal behavior of earth sheltered buildings in the Givoni bioclimatic diagram showed that most of the earth sheltered buildings in the OHP period provide thermal comfort to humans. Due to the comfort zone in the Givoni climate chart, most of the points are in the comfort zone. Unlike everyday housing, underground and earth sheltered buildings can provide optimal thermal comfort without the use of mechanical equipment for humans. Also, the bioclimatic diagram of Meymand village showed that there is a large difference in temperature during the day and night which indicates that Meymand village has dry climate. Therefore, one of the things that can be used for human thermal comfort is the utilization of the thermal mass of the earth, which is objectively the case in the rocky village of Meymand. The findings of the Givoni Bioclimatic diagram show that the buildings that are at an average altitude of the mountain have better thermal behavior than the other buildings. Also, buildings with southeast and south orientation have more thermal comfort than other buildings. The west-facing Group A buildings are the coldest in the village. Of course, Group A buildings behave more favorably than other buildings at noon when the local climate (outdoor environment) reaches its maximum. But between sunset and sunrise as the Earth loses heat and cools down, the temperature in Group A buildings is reduced and warm and comfortable clothing should be used to create thermal comfort. The results show that Group B buildings have a more balanced thermal behavior than other buildings throughout the day. It is worth noting that Group B buildings have relatively higher temperatures at noon than other buildings, but fall within the range of thermal comfort. Finally, after studying and analyzing the case samples, it was found that B-2 and C-1 are the best thermal comfort buildings in the daytime.
Conclusion
The results of this study showed that the thermal behavior of Meymand earth sheltered buildings during the warm period is optimal and the maximum thermal comfort is related to the buildings with the most infiltration on Earth depth, two-chamber Formation (two consecutive chambers), south orientation. -East south is exposed to sunlight and be in the middle altitude of the mountain.

کلیدواژه‌ها [English]

  • Thermal Behavior
  • Thermal Comfort
  • OHP Period
  • Earth-Sheltered Residential Buildings
  • Maymand
  1.  

    1. Al-Mumin, A.A., 2001, Suitability of Sunken Courtyards  in the Desert Climate of Kuwait, Energy and Buildings,      33(2), pp. 103- 111.
    2. Auhl, I., and  Finch, P., 1979,  Burn in Colour, Hawthorndene. S. Australia: Investigator Press, Edition 1.
    3. Breçani, R., and  Dervishi, S., 2019, Thermal and energy performance evaluation of underground bunkers: An  adaptive reuse approach, Sustainable Cities and Society, Vol 46, 101444.
    4. Cantin, R., 2010,  Field assessment of thermal behaviour of historical dwellings in france. Building Environ,  45(2), pp. 473-484.
    5. Carmody, J., and  Sterling, R., 1993, Underground space Design New York:Van nostrand Reinhold Press, Edition 1,  352 Pages.
    6. Emadian Razavi, S.Z., and Ayatollahi, S.M.h., 2014, Taking advantage of the earth's thermal stability to create thermal comfort, Soffeh Journal, 24(64), pp. 33-42.
    7. Gonzalo, R, 2013, Design of buildings with high energy efficiency, Translated By  Khoshue, A., Sayyadi, E., and Mabhut, M.R, Louts Press, Edition 1, 208 pages.
    8. Hazbei, M., Nematollahi, O.,  Behnia, M., and  Adib, Z., 2015, Reduction of energy consumption using passive architecture in hot and humid climates, Tunn. Undergr. Space, Technol, Vol 47, pp. 16-27.
    9. Heba, H., and Sumiyoshi, D., 2018,  Earth-sheltered buildings in hot-arid climates: design guidelines, Beni-Suef University Journal of Basic and Applied Sciences, Vol 7, pp. 397-406.
    10. Heidary, Sh.,and Imani, F., 2018, Evaluation of underground building energy consumption compared to similar models on the Earth's surface climates in Tehran, Yazd and Tabriz, Iranian Journal of Architectural Studies, 7(13), pp. 89-105.
    11. Khodabakhshian, M., 2012, Earth-shelter Building, a way to save energy. The first conference on climate, building and energy consumption optimization, Esfahan
    12. Khodabakhshian, M., Mofidi  Shemirani, S.M., and  Habib, F., 2012, Typology of Earth-shelter Architecture in Iran. International  Journal of Architecture and Urban Development, 2(4), pp. 5-10.
    13. Labs, K.., 1976,  The Architectural Underground, Underground Space, Vol 1, pp. 135- 156.
    14. Masoudinezhad, M., Tahbaz, S.M., and Mofidi shemirani, S.M., 2018, Investigation of thermal behavior of
    15.  Shavadan, Case Study: Dezful Souzangar House, Iranian Journal of Architectural Studies, 7(13), pp. 49-70.
    16. Milanovi´c, A., Folic, N., and  Folic, R., 2018,  Earth-Sheltered House: A Case  Study of Dobraca Village House near
    17. Kragujevac, Serbia, Sustainability, MDPI, Open Access Journal, 10(10), pp. 1-15.
    18. Mooney, B., 1985,  Modern cavemen of Spain, Toronto Globe And Mail Press, No , Edition .
    19. Moore, F., 2002, Environmental control systems, Translated By Azari, R., and Keynezhad, M.a., Tabriz Islamic Art University Press, Edition 1, 527 pages.
    20. Nasrollahi, N., and  Akrami Abarghuie, F., 2017, Thermal Performance of Earth-Sheltered Residential Buildings: a Case Study of Yazd. Naqshejahan, 6(4) , pp. 056–067.
    21. National Geotourism Initiative, 1387, A rocky village of Meymand, In http://www.kerman.medu.ir, Tuesday, December 5, 2010 at 7:45 pm.
    22. Papada,L., Katsoulakos, N., and  Kaliampakos, D., 2016,  Fighting energy poverty by going underground. Procedia Engineering, Vol 165, pp.  49-57.
    23. Sadoughi, A., Kibert, C., Mirmohammad Sadeghi, F., and  Jafari, S., 2019, Thermal performance analysis of a Traditional  passive cooling system in Dezful, Iran,  Tunnelling and Underground Space Technology, Vol 83, pp. 291-302.
    24. Tahbaz, M., Jalilian, Sh., and  Mousavi, F., 2014, The role of soil thermal mass in controlling the environmental conditions of buildings, field survey in a number of monuments in the city of Kashan, Soffeh Journal, 24(66),  pp. 31-66.
    25. Tan, Z., Roberts, A., Christopoulos, G., Kwok, K., Car, J., Li, X., and Soh, C., 2019,  Working in underground spaces:
    26.  Architectural parameters, perceptions and thermal comfort measurements. Tunnelling and Underground Space Technology, Vol 71, pp. 428-439.