مدلسازی مکانی سیلاب با استفاده از الگوریتم شبکه عصبی مصنوعی و توابع تحلیلی GIS

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران

چکیده

سیلاب از اصلی ترین بلایای همه گیر و یکی از مسائل مهم جهانی است به طوری که با افزایش شدت و فراوانی رخدادهای سیل، نگرانی های جهانی در خصوص افزایش مرگ و میر و ضررهای اقتصادی ناشی از سیل افزایش یافته است. تاکنون روش های مختلفی برای تحلیل این مخاطره طبیعی توسعه و پیشنهاد داده شده است. هدف این مطالعه بهره مندی از توابع تحلیل مکانی سیستم اطلاعات جغرافیایی (GIS)، داده های ایستگاه های هیدرومتری و باران سنجی، تصاویر ماهواره ای و لایه های اطلاعاتی موضوعی در قالب الگوریتم شبکه عصبی مصنوعی، برای پیش بینی مقادیر دبی و مدلسازی مکانی سیلاب در محدوده حوضه رودخانه کن واقع در استان تهران می باشد. به این منظور مدل شبکه عصبی بهینه با هفت ورودی شامل لایه های شیب، انحنای دامنه، جریان تجمعی، پوشش گیاهی، واحدهای زمین شناسی، رده های خاک و داده های بارش به همراه هشت، شانزده و یک نورن به ترتیب برای لایه های مخفی اول و دوم و خروجی طراحی و توسعه یافت. خروجی مدل شبکه عصبی مقادیر دبی ایستگاه ها بود، آنگاه بر اساس بالاترین دقت ثبت شده و به کارگیری اوزان میان نورون‌ها در لایه های شبکه، نقشه پتانسیل سیل خیزی ایجاد شد. پارامترهای دقت سنجی R2، RMSE و MAE برای نشان دادن کارایی مدل پیشنهادی به کار رفتند که به ترتیب مقادیر 0.82، 0.18 و 0.13 را شامل می شدند. نتایج این پژوهش می تواند در برنامه ریزی‌های محیطی آتی در مقیاس محلی به عنوان امکانی برای بهبود مدیریت بحران و مخاطرات زیست محیطی به کار رود. این مطالعه نشان داد که کاربرد توأم توابع تحلیل مکانی GIS و الگوریتم شبکه عصبی کارایی بالایی برای پیش بینی پتانسیل وقوع مخاطرات طبیعی چون سیلاب دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial modeling of floods using Artificial Neural Network (ANN) and analyst functions of GIS

نویسندگان [English]

  • Mohsen Bakhtiari 1
  • Zahra Jahantab 2
1 University of Tehran
2 Islamic Azad University, Science and Research Branch, Tehran
چکیده [English]

With the accelerating rate for the development of human communities in form of urban and rural residential areas, necessity of forecasting and modeling various aspects of natural and human hazards, ensuring associated with controlling the risk of various hazards and other management measures in order to reducing their harmful effects among urban and regional planners and managers has been increased. The flood phenomenon is the one of the hazardous disaster that dictates mortal and economic losses on many people every year all around the world within rural and urban habitats. With regarding intensifies and frequencies of flood events, the global and scientific associations concerns have been increased about its consequences and damages.
So far in current study an efficient and different method for analyzing this natural hazard have been developed and proposed. First, based on a literature review and consultation with experts and scholars aware of the particular circumstances of the under studied area, the required data and information were gathered from various resources such as Iran National Cartographic Center, Tehran province water and wastewater company, the satellite remotely sensed imageries and Geological Survey & Mineral Explorations of Iran (GSI) and after preparing and carrying out the required reforms, they were entered into environment of Geographic information system (GIS). The approach of this study is based on using the spatial analyst functions and tools within GIS for manipulating the data of hydrometric and rain gauges stations, the remotely sensed satellite imagery and thematic layers in the bed of Artificial Neural Network (ANN) algorithm for spatial modeling of flood in the basin of Kan river located in the west northern part of Tehran province. In the next step for achieve the goal of study, the optimal architecture of neural network has been designed and developed based on trial and error and some of the recommended relationships developed in the earlier studies. Using seven inputs layers including the thematic layers of land slope, curvature, accumulated flow, Normalized Differential Vegetation Index (NDVI), geology units, soil classes and the daily precipitation data and one target layer including recharge values of stations within under studied area along with eight and sixteen neurons dedicated to the first and second hidden layers respectively and at last one neuron for the desired output that shows the daily discharge of stations, the spatial modeling of flood incidence were performed. The designed methodology were applied for forecasting and simulating the daily recharge of hydrometric stations then based on the highest recorded accuracy and using the inter-neurons weights between the first two layers of the accomplished network that were applied for weighting overlay of thematic layers, the map of flooding potential was created.
The produced map indicates the susceptibility of lands within Kan basin to flood event that generally the northern areas and lands around Kan river have the highest potential for flood hazard. The resulted relative importance for input layers from running Artificial Neural Network were indicate input layer of the daily precipitation data has the highest weight that followed by vegetation layer input for weighting overlay and assessing the flooding potential in form of the continuous surface within the studied area. The main reason of that is the more dynamic and variability of the above mentioned inputs and so their more importance in incidence of flood in comparison with the other input layers. The parameters of R2, RMSE and MAE were computed for the evaluation of the accomplished method efficiency and accuracy. The algorithm of artificial neural network in forecasting daily discharge with values of 0.82, 0.13 and 0.18 and maximum discharge with values of 0.84, 0.12 and 0.16 for R2, RMSE and MAE respectively reached acceptable outputs. Generally the applied ANN method in assessing the maximum discharge that has a very high correlation with flood occurrence had the more accurate results. The results of this study can be applied in two type for spatial modeling of flooding consist of discrete and continuous forms for the future environmental planning in regional scale as a possibility for improving crisis and environment hazards management. Generally the current study demonstrated that the joint application of the GIS spatial analyst functions and tools with artificial network have the high capability for predicting the potential of natural hazards occurrence like flooding.

کلیدواژه‌ها [English]

  • Flood modeling
  • Artificial Neural network
  • GIS
  • The basin of Kan
  1. امیراحمدی، ابوالقاسم و کرامتی، صغری و احمدی، طیبه. (1391). ریز پهنه بندی خطر سیلاب در محدوده شهر نیشابور در راستای توسعه شهری. مجله پژوهش و برنامه ریزی شهری، شماره 7، صص 91 تا 110.
  2. جعفری، عباس. (۱۳۸۴)، گیتاشناسی ایران، رودها و رودنامه ایران، تهران، انتشارات موسسه جغرافیایی و کارتوگرافی گیتاشناسی، تهران.
  3. علایی طالقانی، محمود و همایونی، صدیقه. (1390). پهنه بندی حوضه ی دینور از نظر تولید سیلاب با استناد به مؤلّفه های ژئومورفولوژی. پژوهش نامه ی جغرافیایی، شماره 1، صص 37 تا 49.
  4. قاسمی، علی و سلاجقه، علی و ملکیان، آرش و اسمعلی عوری، اباذر. (1393). بررسی سیل خیزی و تعیین عوامل مؤثر در آن در حوضة رودخانة بالقلی‌چای با استفاده از تکنیک GIS، RS و مجله محیط شناسی، شماره 2، صص 389 تا 400.
  5. نگارش، حسین و اژدری مقدم، مهدی و آرمش، محسن. (1392). کاربرد شبکه‌ی عصبی مصنوعی در شبیه‌سازی و پیش بینی سیلاب در حوضه ی آبریز سرباز. جغرافیا و توسعه، شماره 31، صص 15 تا 28.
  6. Billa, L, Mansor,Sh, Mahmud ,A.R and Ghazali ,A,H, (2004), Integration of RS, GIS and MIKE 11 Hydrodynamic Modeling for Flood Early Warning: A case study of the Langat river basin Malaysia.
  7. Carrara, A., Guzzetti, F., Cardinali, M., & Reichenbach, P. (1999). Use of GIS technology in the prediction and monitoring of landslide hazard. Natural hazards, 20(2-3), 117-135.
  8. Dang, N. M., Babel, M. S., & Luong, H. T. (2011). Evaluation of food risk parameters in the day river flood diversion area, Red River delta, Vietnam. Natural hazards, 56(1), 169-194.
  9. Dawson, C. W., Abrahart, R. J., Shamseldin, A. Y., & Wilby, R. L. (2006). Flood estimation at ungauged sites using artificial neural networks. Journal of Hydrology, 319(1), 391-409.
  10. Dixon, B. (2005). Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. Journal of hydrology, 309(1), 17-38.
  11. Elsafi, S. H. (2014), Artificial Neural Networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alexandria Engineering Journal, 53, 655–662.
  12. Ezemonye, M. N., & Emeribe, C. N. (2011). Flood characteristics and management adaptations in parts of the Imo river system. Ethiopian Journal of Environmental studies and management, 4(3), 56-64.
  13. Farajzadeh, M. (2001, August). The flood modeling using multiple regression analysis in Zohre & Khyrabad Basins. In 5th International Conference of Geomorphology.
  14. Farajzadeh, M. (2002, September). Flood susceptibility zonation of drainage basins using remote sensing and GIS, case study area: Gaveh rod Iran. In Proceeding of international symposium on geographic information systems, Istanbul, Turkey (pp. 23-26).
  15. Feng LH, Lu J (2010) The practical research on flood forecasting based on artificial neural networks.Expert Syst Appl37:2974–2977.
  16. Fotouhi, S., & Kiani, S. (2015). Micro-zonation of the Urban Flood Risk Model Using AHP (Case Study: Nahavand city).
  17. Geological Survey & Mineral Explorations of Iran (GSI).
  18. Ghanavati, E., Karam, A., & Aghaalikhani, M. (2013). Flood risk zonation in the farahzad basin (Tehran) using Fuzzy model. Geography and Environmental Planning, 23(4), 121-138.
  19. Ghanavati, E. (2014). Flood Risk Zonation for Karaj City Using Fuzzy Logic. Journal of Geography and Environmental Hazards, 2(4), 113-132. doi: 10.22067/geo.v0i0.27924
  20. Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin. Venezuela. Eng Geol 78(1–2):11–27
  21. Hashemyan, F., M. R. Khaleghi, and M. Kamyar. (2015). Combination of HEC-HMS and HEC-RAS models in GIS in order to Simulate Flood (Case study: Khoshke Rudan river in Fars province, Iran). Research Journal of Recent Sciences, 4 (8), 122- 127.
  22. Hematzadeh, Y., Barani, H., & Kabir, A. (2009). The role of vegetation management on surface runoff (Case study: Kechik catchment in north-east of Golestan Province).
  23. Hess, L. L., Melack, J. M., & Simonett, D. S. (1990). Radar detection of flooding beneath the forest canopy: a review. International Journal of Remote Sensing, 11(7), 1313-1325.
  24. Hess, L. L., Melack, J. M., Filoso, S., & Wang, Y. (1995). Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 896-904.
  25. Horritt, M. S., & Bates, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of hydrology, 268(1), 87-99.
  26. Hu, X., & Weng, Q. (2009). Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sensing of Environment, 113(10), 2089-2102.
  27. Huo, Z., Feng, S., Kang, S., Huang, G., & Wang, F. (2012), Integrated neural networks for monthly river flow estimation in arid inland basin of Northwest China. Journal of Hydrology, 159–170.
  28. Hudson, P. F., & Colditz, R. R. (2003). Flood delineation in a large and complex alluvial valley, lower Panuco basin, Mexico. Journal of Hydrology, 280(1), 229-245.
  29. Islam, M. M., Sado, K. I. M. I. T. E. R. U., Owe, M., Brubaker, K., Ritchie, J., & Rango, A. (2001). Flood damage and management modelling using satellite remote sensing data with GIS: case study of Bangladesh. IAHS PUBLICATION, 455-457.
  30. Islam, M. M., & Sado, K. (2002). Development priority map for flood countermeasures by remote sensing data with geographic information system. Journal of Hydrologic Engineering, 7(5), 346-355.
  31. Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric engineering and remote sensing, 54(11), 1593-1600.
  32. Kafle, T. P., Hazarika, M. K., Shrestha, K. G., Prathumchai, K., & Samarakoon, L. (2006). Integration of remote sensing and GIS with flood simulation model for flood hazard mapping in the Bagmati River, Nepal. Thailand: New Technologies for Urban Safety of Mega Cities in Asia, 257-268.
  33. Kalteh, A. M. (2008). Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding. Caspian Journal of Environmental Sciences, 6(1), 53-58.
  34. Kavzoglu, T., & Mather, P. M. (2003). The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24(23), 4907-4938
  35. Kentel, E. (2009). Estimation of river flow by artificial neural networks and identification of input vectors susceptible to producing unreliable flow estimates. Journal of hydrology, 375(3), 481-488.
  36. Kerh, T., & Lee, C. S. (2006). Neural networks forecasting of flood discharge at an unmeasured station using river upstream information. Advances in Engineering Software, 37(8), 533-543.
  37. Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67(1), 251-264.
  38. Kim, M., & Gilley, J. E. (2008). Artificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areas.Computers and electronics in agriculture, 64(2), 268-275.
  39. Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences,67(1), 251-264.
  40. Liu, C., Li, Y., & Li, J. (2017). Geographic information system-based assessment of mitigating flash-flood disaster from green roof systems. Computers, Environment and Urban Systems, 64, 321-331.
  41. Liu, H., & Chandrasekar, V. (2000). Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. Journal of Atmospheric and Oceanic Technology, 17(2), 140-164.
  42. Mahmudian,Ali Akbar. Ghasemi, Houshang. Houshmand fini, Gholam Reza. Artidar, Reza. (2006). A glance at Tehran from the beginning up till now. Tehran: GITASHENASI Geographical & Cartographic Institute.
  43. Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling & software, 15(1), 101-124.
  44. Menhaj, M. B. (1998). Fundamentals of neural networks. Computational intelligence, 1(1).
  45. Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes, 5(1), 3-30.
  46. Mukand, N.M.D., Huynh, S.B. and T. Luong. )2011(. Evaluation of food risk parameters in the Day River Flood Diversion Area, Red River Delta, Vietnam. Nat Hazards, 56:169–194.
  47. Natural Resources and Watershed Management Organization
  48. Pawattana, C., Tripathi, N. K., & Htwe, S. L. (2009). Development of Potential Floodwater Retention Zones using AHP and GIS: A Case Study in the Chi River Basin, Thailand. International Journal of Geoinformatics, 5(4).
  49. Pirasteh, S., Rizvi, S. M. A., Ayazi, M. H., & Mahmoodzadeh, A. (2010). Using microwave remote sensing for flood study in Bhuj Taluk, Kuchch District Gujarat, India. Int Geoinformatics Res Dev J, 1(1), 13-24.
  50. Pontes, P. R. M., Fan, F. M., Fleischmann, A. S., de Paiva, R. C. D., Buarque, D. C., Siqueira, V. A., ... & Collischonn, W. (2017). MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS. Environmental Modelling & Software, 94, 1-20.
  51. Powell, R. L., Roberts, D. A., Dennison, P. E., & Hess, L. L. (2007). Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sensing of Environment, 106(2), 253-267.
  52. Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focussing on different training sites. International Journal of Physical Sciences, 4(1), 1-15.
  53. Oh, H. J., & Pradhan, B. (2011). Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37(9), 1264-1276.
  54. Ray, C., & Klindworth, K. K. (2000). Neural networks for agrichemical vulnerability assessment of rural private wells. Journal of Hydrologic Engineering, 5(2), 162-171.
  55. Saini, S. S., & Kaushik, S. P. (2012). Risk and vulnerability assessment of flood hazard in part of Ghaggar Basin: A case study of Guhla block, Kaithal, Haryana, India. International Journal of Geomatics and Geosciences, 3(1), 42-54.
  56. Saghafian, B. and H. Farazjoo. 2007. Determination of flood source areas and flooding prioritization of hydrologic units in Golestam dam watershed, Iranian journal of watershed management science and engineering 1: 1-11.
  57. Sarhadi, A., Soltani, S., & Modarres, R. (2012). Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal of Hydrology, 458, 68-86.
  58. See, L., & Openshaw, S. (2000). A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal, 45(4), 523-536.
  59. Seenath, A., Wilson, M., & Miller, K. (2016). Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: Which is better for guiding coastal management?. Ocean & Coastal Management, 120, 99-109.
  60. Stefanidis, S., & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural hazards, 68(2), 569-585.
  61. Stripling, S., Panzeri, M., Blanco, B., Rossington, K., Sayers, P., & Borthwick, A. (2017). Regional-scale probabilistic shoreline evolution modelling for flood-risk assessment. Coastal Engineering, 121, 129-144
  62. Wang, W., Chau., W., Qiu., L., & Chen, Y. (2015), Improving forecasting accuracy of medium and long-termrunoffusing artificial neuralnetworkbasedonEEMDdecomposition, Environmental Research.
  63. Wu, C, L., Chau, K, W., & Li, Y, S. (2009), Methods to improve neural network performance in daily flows prediction. Journal of Hydrology, 80–93.
  64. Yang, X. L., Ding, J. H., & Hou, H. (2013). Application of a triangular fuzzy AHP approach for flood risk evaluation and response measures analysis. Natural hazards, 68(2), 657-674.
  65. Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth surface processes and landforms, 12(1), 47-56.