بررسی موردی نقش تاوه پیرا قطبی بر بارش روز 29 اکتبر 2015 ایلام

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد هواشناسی، سازمان هواشناسی کشور

2 استادیار، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

3 دانشیار، پژوهشکده هواشناسی

چکیده

تاوه پیرا قطبی شکل غالب دینامیکی گردش زمستانه در پوش سپهر پایین و بخش میانی و بالایی وردسپهر است که وجود بادهای شدید در لبه بیرونی و پایین بودن دما در نواحی داخلی از مهمترین مشخصه‌های آن می‌باشد. در این پژوهش، با انتخاب یک دوره آماری 30 ساله از 1986 تا 2015 و استفاده از داده‌های فشار سطح متوسط دریا و ارتفاع ترازهای مختلف فشاری، ابتدا موقعیت مرکز تاوه پیراقطبی در نیمکره شمالی در دو ماه ژانویه و جولای به عنوان ماه‌های به ترتیب سرد و گرم سال تعیین شد. در ادامه برای بررسی اثر تاوه پیراقطبی یر بارش‌های جنوبغرب ایران، بارش شدید باران در 29 اکتبر 2015 بررسی شد. نتایج نشان داد که در ماه گرم، مرکز تاوه در روی کلاهک قطبی قرار دارد و سطح بیشتری را نیز پوشش میدهد. در ماه سرد، ناوه‌های این سامانه در راستای نصف‌النهاری به سوی استوا گسترش یافته است. در حالت موردی 29 اکتبر 2015 نیز دیده شد که یک ناوه ارتفاع از تاوه پیراقطبی به شرق دریای مدیترانه امتداد یافته است. در اثر حرکت چرخندی شرق ناوه ارتفاع تراز میانی، حرکت بالاسوئی در روی عراق و غرب ایران ایجاد شده است. این شرایط سبب ایجاد واگرائی در ترازهای فوقانی و همگرائی در ترازهای زیرین شده و در نتیجه مطابق با معادله گرایش فشار، فشار درسطح زمین در این منطقه کاهش یافته و یک سامانه کم فشار دینامیکی تشکیل شده است. این مکانیسم نقش تاوه پیراقطبی را در سامانه کم فشار شرق دریای مدیترانه آشکار کرد. بعلاوه فرافت نم نویژه از عرضهای جنوبی همراه با حرکت بالاسوی شدید، سبب فراهم نمودن بارشهای همرفتی شدید در مناطق غرب و جنوبغرب ایران شده است.   

کلیدواژه‌ها


عنوان مقاله [English]

The Case of Polar Vortex and its Role in Iran Showers West (Case Study: Oct. 2015)

نویسندگان [English]

  • Azam Kakavand Devich 1
  • AmirHossein Mashkoti 2
  • Mohammad Moradi 3
1
2
3
چکیده [English]

Introduction
The polar vortex is dominated by the dynamic of winter circulation in the lower seam, and the middle and upper parts of the windsurf, the most important feature of the weather, the presence of extreme winds at the outer edge, and low temperatures in the vortex area. In Iran, the temperature and precipitation conditions are controlled by polar water and high pressure. Whenever the axis of polar vortex from 40 to 50 degrees eastward deepens and extends to southern latitudes, the country's rainfall will be widespread and more intensive. Stack deployment in the west of the Black Sea and Eastern Europe will increase with precipitation and decline. The temperature is in the country. Determining the effect of atmospheric circulation on precipitation and temperature is one of the most important dynamical and synoptic meteorological goals. The study of the displacement of polar velocities and the strengthening and weakening of the polar waters can provide long-term predictions. In this study, using the data of the mean sea level pressure and the height of different pressure levels from 500 hPa to 010 hPa within the northern hemisphere, it was tried to use a daily rainfall data in October 2015 to investigate a flood event in the southwest region of Iran. It was analyzed with polar velocity changes. With the spread of polar fissures to southern latitudes along the lengths of 40 to 50 degrees, the establishment of a strong heap on the Black Sea, the East and the Mediterranean Sea, the presence of strong winds at the outer edge of the Dao, which leads to the capture of cold air within the vortex, Winds that bring humidity and heat from lower latitudes to Iran and the presence of tangible temperature conflicts between the western strip of Iran with higher latitudes can be deduced. Polar fence strengthening in the period from October 26 to 29, 2015 has a significant impact on rainfall increase in the studied area had.

Materials and Methods
In this research, the required data are taken from the NCEP / NCAR archive. These data are available from the CDC \ REANALYSIS Internet site in the form of netcdf, at a time interval of 6 hours and a 2.5-degree step along the latitude and longitude, all points on the planet from 90 to 90+ degrees latitude and zero to 357.5 degrees longitude. The data include the mean sea level pressure, temperature, geopotential elevation, daily precipitation data of western stations of the country, and wind pattern vector. Available files, each containing one-year data, are converted to text files by the ncdump command, which is one of the pcgrads executable commands. In this research, the ncread command was used in the programming language for converting data into text files, then using the average mean sea level pressure patterns, the geopotential height of the middle and upper levels of the atmosphere (500 and 050 hPa), the wind pattern vector The 200hp level, the 500hp temperature pattern, and the daily rainfall data of the western stations of the country in October 2015, examined the dynamics and dynamics of the meteorological conditions governing the precipitation system October 27-30, which resulted in flood events in the western part of Iran. To reduce the volume of content in this article, only analysis of October 28 and 29 is presented.

Results and Discussion
The study of the mean surface-to-ground and geopotential heights of different barley levels revealed that on October 27, the axis of the vortex crevices extends along the longitude of 40 to 50 degrees, and witnesses the presence of backs on the Black Sea and the East and the Mediterranean Sea. On Oct. 28, the stack and the waves are the widest. On October 29th, the nave has moved slightly toward the higher latitudes with its intensity. Considering that previous research has shown that whenever the axis of polar gravity from the southern latitudes along the longitude of 40 to 50 degrees is drawn, the precipitation rate in Iran increases and the stack is located in the east and center of Europe, The Black Sea and the East, and the center of the Mediterranean Sea, are also rising in Iran. Therefore, the results also indicate that conditions are favorable for precipitation.
A wind field survey at 200 hp in October 2015 showed that at this level, a polar jet flows along the meridian to the Black Sea and the Mediterranean Sea. There is also a tidal jet in the eastern Mediterranean and the western strip of Iran. The cold weather with these currents falls into the Mediterranean Sea, and warmer low latitudes also penetrate the southern winds of the area and make the situation more conducive to creating temperature conflicts in the region.
The results of the study of the temperature field at a 500 hp peak in October 2015 showed that on October 27-30, the Arctic Cooling Center covered vast areas of the poles, and the caverns of this cold air reached the southern latitudes on the Black Sea, the Mediterranean, and Siberia It has extended and influenced the country of Iran.
With the spread of polar fissures to southern latitudes along the lengths of 40 to 50 degrees, the establishment of a strong heap on the Black Sea, the East and the Mediterranean Sea, the presence of strong winds at the outer edge of the Dao, which leads to the capture of cold air within the vortex, Winds that bring humidity and heat from lower latitudes to Iran and the presence of tangible temperature conflicts between the western strip of Iran with higher latitudes can be deduced. Polar fence strengthening in the period from October 26 to 29, 2015 has a significant impact on rainfall increase in the studied area had.

کلیدواژه‌ها [English]

  • Polar Vortex
  • Fluctuation
  • Geopotential Height
  • Potential Vortex
  • Mediterranean Sea
  1.  

    1. سلیمانی دامنه، علی، میر رکنی، سید مجید، بهرامی، مژگان، "نقش تاوه قطبی در زمستان‌های فرین ایران"، مجموعه مقالات کنفرانس ژئوفیزیک ایران، 1393.
    2. مرادی، حمیدرضا (1380) "تاوه قطبی و اثرات آن بر اقلیم"، مجله نیوار، شماره 42 و 43.
    3. میر رکنی، سید مجید، محب الحجه، علیرضا و احمدی گیوی، فرهنگ، "نقش گردش‌های پوش سپهر در بی‌هنجاری‌های اقلیمی زمستان‌های 1386 و 1388"، مجله ژئوفیزیک ایران، دوره 7، شماره 1، بهار 1392.
      1. Angel J. K. Variations and Trends in Tropospheric and Stratospheric Global Temperature, 1958-87. J. Climate, 5, 22-29.
      2. Angel J. K., and J. Korshover, 1985: Displacement of the North Circumpolar Vortex during El-Nino, 1963-1983. Mon. Wea. Rev., 113, 1627-1630.
      3. Angell, J. K., and J. Korshover, 1983: global Temperature variations in the Troposphere and Stratosphere, 1985-1982. Mon. Wea. Rev., 111, 901-921.
      4. Angell, J. K., and J. Korshover, 1992: Relation between 300-mb North Polar Vortex and Equatorial SST, QBO, and Sunspot Number and the Record Contraction of the Vortex in 1988-89. J. Climate, 5, 22-29.
      5. Baldwin, M. P., and Dunkerton, T. J., 2001, Stratospheric harbingers of anomalous weather regimes: Science, 294, 581-584.
      6. Black, R. X., McDaniel, B. A., Rabinson, W. A.,2002, Stratosphere–Troposphere Coupling during Spring Onset: Jornal of Climate, 19, 4891-4901.
      7. Davis, R. E. and S. R. Benkovic, 1992: Climatological Variations in the Northern Hemisphere Circumpolar Vortex in January. Theor. Appl. Climatol., 46, 63-74.
      8. Dunkerton, T. J., and D. P. Delisi, 1986; Evolution of Potential Vorticity in the Winter Stratosphere of January-February 1979. Geophys. Res. Let., 91, 1199-1208.
      9. Francis, J. A., and S. J. Vavrus. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophyical Research Letters 39, L06801.
      10. Haynes, P. H., Marks, C. J., McIntyre, M. E., Shepherd, T. G., and Shine, K. P., 1991, On the downward control of extratropical diabatic circulations by Eddy-Induced Mean Zonal Forces: Journal of the Atmospheric Sciences, 48(4), 651-679
      11. Jones, P. D. 1988: Hemispheric Surface Air Temperature Variations: Recent Trends and an Update to 1987. J. Climate, 1, 654-660.
      12. Kodera, K., and Kuroda, Y., 2000, Tropospheric and stratospheric aspects of the Arctic Oscillation: Geophysical Research Letters, 27, 3349-3352.
      13. Leovy, C. B. Sun C. R Hitchan, M. H., Remsberg E. E., Russell. III. J. M. Gordly. L. L Gille, J. C. and Lyjak L. V. (1985), Transport of Ozone in the Middle Stratosphere: Evidence for Planetary Wave Breaking, J Atmos. Sci. 42, 230-244.
      14. Mcintyre, M. E. and T. N. Palmer, 1984: The “Surf Zone” in the Stratosphere. J. Atmos. Terr. Phys., 46, 825-849.
      15. Mcintyre, M. E., 1988: How Well Do We Understand the Dynamic of Stratosphere Warming? J. Meteorol. Soc. Jpn., 60, 37-65.
      16. Mcintyre, M. E., 1992: Atmosphere Dynamic: Some Fundamentals with Observational Implication, Proc. International School of Physics “Enrico Fermi” CXV Course. J. C Gille and J Visconti, Eds., 313-386.
      17. Nash, Eric R., and A. Newman 1996: An Objective Determination of the Polar Vortex Using Ertels Potential Vorticity. J. Geop. Res. Vol. 101. No. D5. 9471-9478.
      18. Shindell, D. et al. “Solar Cycle Variability, Ozone, and Climate.” Science. 1999, 284, 305-308. A contribution from the NASA Goddard Institute for Space Studies.