ارزیابی مدل‌ها و سناریوهای گزارش پنجم تغییراقلیم در برآورد دما و بارش ایستگاه بیرجند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی آب دانشگاه بیرجند

2 دانشیار گروه علوم و مهندسی آب دانشگاه بیرجند

چکیده

افزایش میزان غلظت گازهای گلخانه­ای می تواند منجر به گرم شدن جهانی شود و این امر آب و هوا را تحت تاثیر قرار داده و  منجر به وقوع پدیده تغییراقلیم شود. در این تحقیق سعی شد روند تغییرات بارش، دمای کمینه و دمای بیشینه ایستگاه سینوپتیک بیرجند در طی دوره­های زمانی مختلف از سال 2010 تا سال 2100 میلادی با استفاده از داده­های گزارش پنجم تغییراقلیم مورد بررسی قرار گیرد. مدل­های CSIROMK3.6،  GFDL-ESM2M، GISS-E2-R، IPSL-CM5A-MR و MIROC-ESM به همراه سناریوهای انتشار RCP2.6, RCP4.5, RCP6, RCP8.5ارزیابی تغییرات بارش، دمای کمینه و دمای بیشینه را در دوره زمانی­های مختلف آینده نسبت به دوره زمانی پایه برای ایستگاه سینوپتیک بیرجند انجام دادند. برای اطمینان از نتایج مدل­ها، ابتدا مقایسه­ای بین داده­های متغییرهای هواشناسی ­حاصل از مدل­ها با ایستگاه سینوپتیک در دوره زمانی پایه انجام شد. نتایج تحقیق مشخص کرد مدل­های GFDL-ESM2M و GISS-E2-R از دقت بیشتری در برآورد متغییرهای هواشناسی در دوره زمانی پایه و آتی برخوردارند. همچنین روند تغییرات بارش از سال 2010 تا 2100 میلادی برای مدل­ها و سناریوهای مختلف متغییر خواهد بود. با این وجود، مدل­های GFDL-ESM2M و MIROC-ESM در بین مدل­ها و سناریو RCP8.5 در بین سناریوها کاهش بارش بیشتری را برآورد می­کنند. از مقایسه سناریوها در همه مدل­ها نیز مشخص شد که دمای بیشینه در سناریو RCP8.5و RCP2.6 به ترتیب بیشترین و کمترین افزایش را در طی دوره­های آتی خواهد داشت. همچنین این تحقیق مشخص کرد مدل­های مختلف GCM و سناریوهای انتشار برآورد متفاوتی از متغییرهای هواشناسی خواهند داشت و باید در انتخاب مدل و سناریو برای هر منطقه دقت بیشتری انجام داد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation models and scenarios of the climate change Fifth Report in estimation temperature and precipitation of Birjand Station

نویسندگان [English]

  • Mostafa Yaghoobzadeh 1
  • yousef rahmani 2
1 Assistant Professor, Department of water science engineering, University of Birjand
2 Assistant Professor, Department of science and water engineering, University of Birjand
چکیده [English]

Introduction According to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, the atmospheric concentrations of the greenhouse gases, i.e., carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), have increased to unprecedented levels in the last 800 000 years. An increase in the levels of GHGs (greenhouse gases) can lead to greater warming, which, in turn, can influence the world’s climate that leading to the phenomenon climate change. It is predicted that climate change induced weather extremes, extreme heat, severe drought and heavy precipitation that will have significant impacts on agriculture. In support of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), the fifth phase of the Coupled Model Intercomparison Project 5 (CMIP5) provides a new suite of coordinated climate model experiments focusing on major gaps in understanding of historical and future climate changes. Most of the present day CMIP5 models show good performances in reproducing the present climatology, climate variability and climate extremes. In this research, the trend of rainfall changes, minimum temperature and maximum temperature of the synoptic station of Birjand during the decades and different periods from 2010 to 2100 years was studied using the data of CMIP5.
Materials and Methods This research was conducted to determine climate changes  condition in Birjand Synoptic Station located at longitude between 59˚ 7’ N and latitude between 32˚ 52’E, Iran. AR5 Global Climate Models of CSIROMK3.6, GFDL-ESM2M, GISS-E2-R, IPSL-CM5A-MR and MIROC-ESM with RCP2.6, RCP4.5, RCP6 and RCP8.5 Emission scenarios performed precipitation, minimum temperature and maximum temperature in the coming decades for the Birjand Synoptic Station.  Also, the process of changes in meteorological variables in the two form of decades-decades from 2010 to 2100 and between the next three periods of 2040-2010, 2070-2070, and 2070-2100 were taken. The changes in meteorological variables of the future periods were investigated to the base period (1970-2000) of station.
Results and Discussion The results of the study indicated that GFDL-ESM2M and GISS-E2-R models have a more accurate estimation of meteorological variables over the base and future time periods. Also The trend of precipitation from 2010 to 2100 year for various models and scenarios in different decades. However, the GFDL-ESM2M and MIROC-ESM models estimate a further decrease in rainfall between models and RCP8.5 among scenarios. Also Comparison of scenarios in all models showed that the maximum temperature in the RCP8.5 and RCP2.6 respectively with the highest and the least increase in the coming years. This increase in temperature for the scenario is RCP8.5 and the two MIROC-ESM and IPSL-CM5A-MR models will be more than 6 degrees Celsius in 2100 year in compared to 2010 year.
The maximum and minimum temperatures Changes unlike precipitation are steadily increasing  and except in the near future  period (2040-2010), in the next two periods, the models estimate the trend of temperature rise in the future relative to the base period. The MIROC-ESM and IPSL-CM5A-MR models and the MIROC-ESM and GFDL-ESM2M models estimate the highest maximum temperature and minimum temperature increase in the future compared to the base period. In Comparing periods, the far future (2070-2100) and mid-term (2040-2070) period estimated a higher increase in temperature and precipitation, respectively. The GISS-E2-R model estimates the minimum maximum and maximum temperature rise for the three periods.
Conclusions The research has determined that models are uncertain in the estimation of weather variables, which makes it difficult to select the appropriate model for use in research. Changes in scenarios are also different and the 8.5 scenario estimates higher-risk conditions that including higher temperature increases and further reductions for the future. Also, in comparison to periods, highest rainfall and temperature increase was estimated in the 2055 period and 2085 period respectively. The use of climate change Fifth Report data and the study of variations in meteorological variables over the next three periods can determinate what will happen in the future in accordance with the climate change scenarios. Also, the results of this research can be helpful in considering future weather variables in planning for management of different sectors of agriculture, water resources and environment in the future.

کلیدواژه‌ها [English]

  • Fifth Assessment Report
  • AOGCM model
  • Emission scenarios
  • Meteorological variables
  • future period
 
1.     Amani, Z., Deihimfard, R. Makhtasi Bidgli, E. 2016. Evaluation of drought under increasing of temperature due to climate change in rain fed wheat-growing areas of Fars province using Aridity Index, Electronic Journal f Crop Production, 9(2): 151-174.
2.   Asgari, S., Ghahreman, N., babaeian, I. 2017. Quantifying the possible impacts of climate change on temperature-humidity index, (THI) under RCP scenarios across Iran, Journal of Climate Research, 8(31-32), 1-18.
3.    Barfus, K., Bernhofer, C. 2014. Assessment of GCM performances for the Arabian Peninsula, Brazil, and Ukraine and indications of regional climate change. Environ. Earth Sci. 12: 4689–4703.
4.  Binesh, N., Niksokhan, M.H., Sarang, A. 2018. Analysis of Climate Change Impact on Extreme Rainfall Events in the West Flood-Diversion catchment of Tehran, Journal of Watershed Management Research, 9(17): 226-234.
5.   Godarzi, M.R., Faraji, A. 2017. Assessment of different downscaling techniques for low flow indices under climate change effects, Journal of Climate Research, 8(31-32), 57-72.
6.  Guo, Y., Li, S., Liu de, L., Chen, D., Williams, G., Tong, S. 2016. Projecting future temperature-related mortality in three largest Australian cities. Environ. Pollut. 208: 66–73.
7.    Hajat, S., Vardoulakis, S., Heaviside, C., Eggen, B. 2014. Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J. Epidemiol. Community Health, 68: 641–648.
8.  Hooshmand, D., Khordadi, M.j. 2014. Uncertainty Assessment of AOGCMs and Emission Scenarios in Climatic Parameters Estimation (Case Study: Mashhad Synoptic Station). Geography and Environmental Hazards, 3(11): 77-92.
9.    Huynen, M.M., Martens, P. 2015. Climate change effects on heat- and cold-related mortality in the Netherlands: a scenario-based integrated environmental health impact assessment. Int. J. Environ. Public Health, 12 (10): 13295–13320.
10.    IPCC, (Intergovernmental Panel on Climate Change), 2013. The physical science basis. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
11.  Li, T., Horton, R.M., Kinney, P. 2013. Future projections of seasonal patterns in temperature-related deaths for Manhattan. Nat. Climate Chang 3: 717–721.
12.   Martin, S.L., Cakmak, S., Hebbern, C.A., Avramescu, M.L., Tremblay, N. 2012. Climate change and future temperature-related mortality in 15 Canadian cities. Int. J. Biometeorology, 56 (4), 605–619.
13.   Mills, D., Schwartz, J., Lee, M., Sarofim, M., Jones, R., Lawson, M., Duckworth, M., Deck, L. 2015. Climate change impacts on extreme temperature mortality in select metropolitan areas in the United States. Climatic Change, 131: 83–95.
14. Node Farahani, M. A., Rasekhi,  A., Parma, B., Keshvari, A. 2018. The Effects of Climate Change on Temperature, Precipitation and Drought in Upcoming Period in Shadegan Basin, Iran-Water Resources Research. 14(3): 160-173.
15.  Poormohammadi, S., Malekinezhad, H. 2013. Classification of Homogeneous Climatic Regions under the Impact of Climate Change and Greenhouse Gas Emissions Scenarios Using L-Moments Technique in Iran, Journal of Watershed Management Research, 4(8): 58-76.
16. Pourkarimi, Z., Moghadasi, M., Mohseni Movahhed, A., Delavar, M.  2018. The Effect of Climate Change on the Hydrological and Agricultural Drought Characteristics in Zarinehrud Basin Using SRI and SSWI Indices and SWAT Model, 49(5):1145-1157.
 17. Sharif, M., 2015. Analysis of projected temperature changes over Saudi Arabia in the twenty-first century. Arabian Journal of Geosciences. 8 (10): 8795–8809.
18.  Schwartz, J.D., Lee, M., Kinney, P.L., Yang, S., Mills, D., Sarofim, M.C., Jones, R., Streeter, R, Juliana, A.S. Peer, J., Horton, R.M. 2015. Projections of temperature-attributable premature deaths in 209 U.S. cities using a cluster-based Poisson approach. Environmental Health, 14(6): 85–99
19. Vardoulakis, S., Dear, K., Hajat, S., Heaviside, C., Eggen, B., McMichael, A.J., 2014. Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia. Environ. Health Perspect. 122: 1285–1292.
20. Yaghoobzadeh, M., Amirabadizadeh, M., Ramezani, Y., M. Pourreza-Bilondi, M. 2017. The Investigation of uncertainty Emissions Scenarios of Climate Change in Soil Moisture Estimation during the Growing Season of Wheat. Iranian Journal of Irrigation and Drainage, 11(4): 586-596.
21. Zarezade Mehrizi, SH., Khoorani, A., Bazrafshan, J., Bazrafshan, O.  2018.   Assessment of future runoff trends under multiple climate change scenarios in the Gamasiab river basin, Iranian Journal of Ecohydrology, 5(3): 777-789.