پهنه‌بندی آگروکلیماتیک کشت انگور در حوضه آبخیز قره سو با استفاده از روش‌های نوین چند معیاره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 دانشجوی دکتری جغرافیای طبیعی، اقلیم‌شناسی، دانشکده ادبیات و علوم انسانی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانش آموخته، کارشناسی ارشد، رشته اقلیم شناسی، دانشکده ادبیات و علوم انسانی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

هدف از این پژوهش،‌ شناسایی نواحی مستعد برای کشت انگور در حوضه آبخیز قره­سو با توجه به شرایط آبو هوایی منطقه مورد مطاله است.مراحل پژوهش حاضر عبارتند از: مرحله اول جمع­آوری داده­های اقلیمی از ایستگاه­های هواشناسی اردبیل، ‌اصلاندوز، اهر، سرعین، فرودگاه، کلیبر، ‌مشکین­شهر مشیران، و نمین. مرحله دوم محاسبه و مشخص کردن شاخص­های فنولوژیکی که برای رشد انگور از جمله، بارش­های سالانه و فصلی، میانگین دما در طول دوره رشد، درجه روز رشد، رطوبت نسبی و ساعت آفتابی در بازه زمانی 20 ساله (2017-1998). مرحله سوم استفاده از روش‌های سلسله مراتبی، مولتی مورا و ساو برای تصمیم گیری بهتر و تعیین ارجحیت کشت انگور می‌باشد.نتایج حاصل از تحلیل نقشه­ها نشان دادکه نواحی شرقی حوضه قره سو از قبیل ایستگاه های اردبیل، نیر و نمین با توجه به شرایط دمایی و طول روز نامناسب، نواحی مرکزی و غربی از قبیل ایستگاه های مشکین شهر، مشیران، دوست بیگلو و لاهرود با توجه به شرایط دمایی، درجه روز و بارش مناسب و نواحی جنوبی حوضه در ایستگاه کلیبر به علت شرایط مطلوب اقلیمی خیلی مناسب برای کشت انگور می باشد.  همچنین نمودارها و نقشه‌های حاصل از محاسبات تبخیر و تعرق پتانسیل نشان می‌دهد که در نواحی مرکزی، غربی و جنوب حوضه قره سو نیاز آبی منطقه، به خاطر تبخیر و تعرق زیاد و بیلان منفی آب، افزایش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Agro- Climate zonation of grapevine cultivation in Qare-Sou watershed using novel multi-criteria methods

نویسندگان [English]

  • Behroz Sobhani 1
  • Vahid safarian 2
  • Abbasali seddignia 3
1 University of Mohaghegh Ardabili
2
3
چکیده [English]

Introduction
The growth and development of plants depends on the genetic structure and the environment and water conditions (Creasy, 2009: 24). One of the basic ways for agricultural development is optimal land use, in accordance with climatic conditions. Essentially, it is necessary to recognize different factors, such as stability factors (elevation, soil, slope) and unstable factors (climate factors). Grapes are grown throughout the world and used alone in a variety of products. Grape cultivation is one of the major horticultural industries, with its cultivated area in the world of 7.9 million hectares (Mohammadi, 2013: 58). In general, the aim of this study was to find new areas for grape cultivation in Qare-Sou basin, considering the water conditions and vegetative needs of the grapevine, and, by investigating and identifying the positive and negative factors, the spread of cultivation Grapes or limiting it around the study area.

Materials and methods
Calculate the degree of growth day index
Plant growth, like all biological phenomena, depends on the thermal power of the environment. The growth of each plant begins at a certain temperature threshold. For example, the grape threshold is 10 degrees centigrade. In this research, Equation 1 was used to calculate GDD (Mousavi, 1393: 117).
GDD = (Tmax +Tmin )/2-Tbase
In this equation, TMAX is the maximum temperature, Tmin is the minimum temperature and Tbase is the threshold temperature or plant's base temperature. If the day is zero or negative, then that day will not affect growth. So, we can calculate the GDD index for each station with the average temperature of each month and convert it to the average daily temperature and base temperature (for grapes 10) (Mousavi, 1393: 117).

Average temperature during growth (T)
For its calculation, Equation 2 is used, which means the average temperature of the plant growth moths that has been accumulated since the onset of the growth of the plant, which begins with germination and ends with the arrival of the grape fruit, and computes the average(Mousavi, 1393: 117).
Techniques used in this research
1. Saw SAW method
2- Multimora

Results and discussion
First, by drawing maps in the GIS environment, we conclude that east of the river is not suitable for the cultivation of grapes, and as the west moves up, the preference for cultivating grapes increases, this priority in the northern part of Meshkin shar has reached the right place and again, as we go north stream, the priority of grape cultivation has been reduced, however, this reduction is not as high as the east mound, and the Mashiran area is considered medium for cultivation, as in the Lahrud region, but the boundary partially differs in different methods. In addition, in all methods around Kaleybar, the most suitable and best area for grape cultivation was obtained. Secondly, by interpreting the graphs and maps from the potential evapotranspiration calculations, we conclude that as we go from east to the westside of the river, the water requirement of the region increases due to high evapotranspiration and negative balance of water.
Conclusion
Investigations carried out with five different methods in Chapter 4, it can be concluded that most of the Qare-Sou and surrounding areas are suitable for grapevine cultivation. Grapes have a little need for water in relation to the currently cultivated crops, as well as a diverse and diverse nutritional value, high pharmaceutical value, high health and treatment, and the glacial effect due to the delay in the beginning of grape germination and water diversity And the region's airspace and the existence of the river are less than the surrounding area. Therefore, with better management, it is possible to prevent waste of water in the area and, at a lower cost, produce a valuable, nutritious and profitable product.
By using five different methods, it can be concluded that most of Qarhosu and its surrounding areas are suitable for grapevine cultivation. Grapes have a little need for water in relation to the currently cultivated crops, as well as a diverse and diverse nutritional value, high pharmaceutical value and high health and treatment, as well as glacial effects due to the delay in the beginning of grape germination and water diversity. And the region's airspace and the existence of the river are less than the surrounding area. Therefore, with better management, it is possible to prevent waste of water in the area and, at a lower cost, produce a valuable, nutritious and profitable product.

  1.  

    1. Antonio Fonseca Conceicao, M., Tonietto, J. 2015. Climatic Potential for Wine Grape Production in the Tropical North Region of Minas Gerais State Brazil, bras. Frutic, 27:121-122.
    2. Ashrafi, Ali, Mikaeli, Javad, Dehghani, Morteza. 2013. Evaluation of ecological power and zoning of jujube cultivars in Khorasan, Journal of Geographic Space Design, 3 (7): 86-67.
    3. Cittadini, R; and others. 2007. Mapping of first- first-day and risk of first damage on soybeans. Journal of Agriculture meteorology, 63(1)-2007.
    4. Creasy, Gl. (2009). Grapes (crop production in science in horticulture series), International publication, 12:24-26.
    5. Dadar, Ali, Ameri, Ali-Akbar, farmer, Hadi. 2013. Investigating the Factors Affecting the Cold Fruit Gardens and Juvenile Cultivation in North Khorasan Province, The First National Conference on Barberry and Enab, South Khorasan, Birjand, Pages 25-53.
    6. Doulatabadi Baneh, Hamed; Abedi, Narjes Khatoon. 2016. Morphological and Phenological Study and Changes of Quantitative and Qualitative Traits of Fruit During Growth Periods of Grape Seedlings of Ghezel Ozum, First Printing, Mashhad, Mashhad, pp. 49-58.
    7. Fazelnaya, the stranger; Hakim Dost, Sayyid Yasser; Balyani, Yadollah. 2014. Grape Cultivation, Second Edition, Tehran: Azad Peyama Publishing House, Pages 200-209.
    8. Frank, M., muller, A., Bruns, E. 2004. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000, Agricultural and Forest Meteorology. 121 (2004) 69–78.
    9. Furong, Z. 2011. Identification of Agricultural Climate Resources for Jujube in Chaoyang Region of Liaoxi. Journal of Anhui Agricultural Sciences, 06.
    10. Hekmati, Jamshid; Tafazoli, Enayat Allah. 2014. Scientific and Practical Horticulture of Grapes, Second Edition, Tehran: Iran Agricultural Science Publishing, pp. 37-39.
    11. Helder F., Inaki, GC., Aureliano, CM., Joao AS. 2016. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biol 22:3774–3778.
    12. Heydarid Rushani, Rasoul. 2011. Agro-climatic zonation of seedling of olive and yellow olives using AHP model in GIS environment in Ardabil province, Master's thesis, Mohaghegh Ardebili University, Faculty of Literature and Humanities, p. 103.
    13. Hu, Y., Li, Y., Zhang, Y. 2012. A study on crop coefficients of jujube under drip-irrigation in Loess Plateau of China. African Journal of Agricultural Research, Vol. 7(19):2971-2977
    14. Joao, AS., Ricardo, C., Helder, F. 2017. Climate change impacts on thermal growing conditions of main fruit species in Portugal. Climate Change 140: 273-286.
    15. Kai-xi, W. 2011. Effect of Different Soil Moisture Conserving Ways on Soil Moisture and Soil Temperature in the Jujube Slope of Loess Hilly Region. China Rural Water and Hydropower, 07.
    16. Kliewer, m. (2012). Nitrogenous substance of table grape varieties. Food Sci, 45: 214-218.
    17. koushaklaq, Faramarz; Soltani Mohsen. 2011. Stratigraphic zonation of the agricultural climate using ArcGIS in Mazandaran province, Sepehr Seasonal Journal, 20 (78): 56-31.
    18. Kracka, M. 2015. Ranking heating losses in a building by applying the Multimoora. English. Econ, vol 21, no 4.
    19. Lavee, S., Asmish, m. 2010. The determinatoin of induction and differentiation in grape vines. Vitis, 6: 1-13.
    20. Mohammadi, Mehdi. 2013. Agricultural Botany, First Edition, Tehran: Sepehr Publishing, Pages 15-58.
    21. Mousavi, Mohammad, Ashraf, Batoul. 2014. Climate and Climate in Agriculture, Third Edition, Mashhad: Ferdowsi University of Mashhad, pp. 117-118.
    22. Salami, Mehrdad, Zahri, Zahra, Kamran Nejad, Alireza. 2011. Investigation of distribution pattern of barley and jujube cultivating areas in Birjand plain and suggesting susceptible areas for this purpose using ArcGIS, the first national conference of barberry and jujube, South Khorasan, Birjand, Pages 71-55.
    23. Seyfi, Mohammad Reza; Kalhor, Marzieh. 2013. A Comprehensive Guide to Illustration of Grape Farming, Second Edition, Sari: Sarva Publications, pp. 88-108.
    24. Tan, F., Xiao-xiang, L., Shao-hui, Ch., Jing-kuo, L. 2012. The Influence of antistaling agent treatment on Winter-jujube during ice-temperature storage. Science and Technology of Food Industry, 23.
    25. Taqiyulo, Hyder; Justice, Ali. 2015. Gardening (Mukhari), Third Edition, Tehran: Avaya Noor Publications, Pages 26-30.
    26. Walker, A., Lee, E. 2017. White grapes arose through the mutation of two similar and adjacent regulatory genes. The Plant Journal. 49 (5): 772–785. 
    27. Wang, Y., Wang, L., Liu, X., Li, Y., Wang, X., Fang, Y. 2018. Climatic regionalization of wine grapes in the Hengduan Mountain region of China. Spanish Journal of Agricultural Research, Volume 16, Issue 2, e0303.
    28. Zhiguo, W., Xiao-juan, R., Ya-li, T., Yao-zu, F., Wan-li, X. 2011. Different Irrigation Models on Temperature and Humidity of Jujube-cotton Intercropping in Micro-ecological Areas. Xinjiang Agricultural Sciences, 12.