بررسی ارتباط بین شاخص نوسان اطلس شمالی (NAO) با خشکسالی‌ها و ترسالی‌های ایران در دو مقیاس ایستگاهی و منطقه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد اقلیم شناسی، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار اقلیم شناسی، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 استادیار آمار، گروه آمار، دانشکده ریاضی، آمار و علوم کامپیوتر، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

ﻫﺪف از اﻳﻦ ﻣﻄﺎﻟﻌﻪ ﺷﻨﺎﺳﺎﻳﻲ راﺑﻄﻪ ﺑﻴﻦ اﻟﮕﻮی دورپیوند نوسان اطلس شمالی (NAO) با خشکسالی­ها و ترسالی­های اﻳﺮاندر دو مقیاس ایستگاهی و منطقه­ای اﺳﺖ. برای رسیدن به این هدف از دو پایگاه داده­ای مختلف استفاده شد. یکی مربوط به داده­های بارش ماهانه 63 ایستگاه همدید برای یک بازه زمانی 30 ساله (2016-1986) است که از سازمان هواشناسی کشور اخذ و دیگری مربوط به مقادیر شاخص نوسان اطلس شمالی (NAO) است که برای همان بازه زمانی از پایگاه داده­ای مرکز ملی پیش­بینی محیطی- مرکز ملی پژوهش­های جویNCEP/NCAR وابسته به سازمان پژوهش­های جوی و اقیانوسی ایالات متحده برداشت شد. از شاخص بارش استاندارد شده (SPI) نیز برای کمی کردن خشکسالی­های استفاده شد. بعد از محاسبه شاخص بارش استاندارد شده (SPI) برای تمامی ایستگاه های مورد مطالعه، بر اساس یک معیار فضایی خشکسالی­ها و ترسالی­های ایران در یک مقیاس ماهانه به سه دسته خشکسالی­ها (ترسالی­ها)ی فراگیر، خشکسالی­ها (ترسالی­ها)ی نیمه فراگیر و خشکسالی­ها (ترسالی­های)ی محلی تقسیم شدند.در نهایت از ضریب همبستگی گشتاوری پیرسون برای بررسی رابطه بین خشکسالی­های ایران چه در مقیاس ایستگاهی و چه در مقیاس منطقه­ای با شاخص نوسان اطلس شمالی (NAO) در ارتباط همزمان و تاخیرهای یک ماهه، دو ماهه و سه ماهه استفاده شد. نتایج این مطالعه نشان داد که شاخص نوسان اطلس شمالی (NAO) در یک رابطه خطی قادر به تبیین سهم بزرگی از تغییرپذیری خشکسالی­ها و ترسالی­های ایران چه در مقیاس ایستگاهی و چه در مقیاس منطقه­ای نبوده است. لذا با توجه به اینکه ساختار اقلیم شناسی بارش­های ایران بسیار پیچیده و همچنین الگوهای همدیدی که در ماه ها و فصل های مختلف ایران را تحت تاثیر قرار می دهند مختلف است، توجه به مدل های غیر خطی جهت مطالعه این روابط بسیار ضروری می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the relationship between North Atlantic Oscillation (NAO) index and drought and wet years of Iran in station and regional scales

نویسندگان [English]

  • Samira Razmjo 1
  • Peyman Mahmoudi 2
  • Seyed Mahdi Amir Jahanshahi 3
1 Department of physical Geography, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran
2 Assistant Pro. Department of Physical Geography, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan
3 Assistant Pro. Department of Statistics, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Introduction
Teleconnection models are increasingly used to predict the average atmospheric conditions in different time periods. In other words, the connection between atmosphere and its slow changes in oceans provides the possibility of predicting climate conditions in different time scales, such as monthly, seasonal, annual and decennial time scales. Teleconnection has always been defined as the simultaneous connection between climate oscillations of a region with changes in pressure patterns and sea surface temperature in other geographical points. As El Nino South Oscillation (ENSO) is the most obvious teleconnection model in south hemisphere, North Atlantic Oscillation (NAO) is also the most obvious teleconnection model in the north hemisphere. This study aims to consider the relationship between drought and wet years in Iran with NAO in both station and regional scales based on one of the linear models.
Materials and Methods
Two datasets were used in this study to evaluate the relationship between NAO with droughts and wet years in Iran. The first dataset was monthly precipitation data of 63 synoptic weather stations received from Iran meteorological organization for a 30-year time interval (1986-2016), and in the second dataset, the values related to NAO for the same time interval (1986-2016) were taken from database of National Center for Environmental Prediction/National Center for Atmospheric Research (NECP/NCRA) of US National Oceanic and Atmospheric Administration (NOAA). After collecting the required data from different databases and forming their databank, Standardized Precipitation Index (SPI), which is one of the indices proposed by World Meteorological Organization, was used to quantify the droughts in Iran. In this step, SOI was calculated for all the studied stations in a monthly scale. In the next step, based on the spatial principle, Iran's droughts and wet years were divided in the same monthly scale into three classes of pervasive droughts (wet years), semi-pervasive droughts (wet years) and local droughts (wet years). After determining droughts in both station and regional scales, Pearson moment correlation coefficient was used to evaluate the relationship between Iran's droughts in station and regional scales with NAO in four concurrent, one-month, two-month and three-month delays. 
Results and Discussion
The analysis of the results related to correlation coefficient between NAO with Iran's drought and wet years in a station scale showed that in autumn, more than 87% of droughts in stations in all delays, except November concurrent delay, have weak correlation with NAO. In November, drought in most stations in the north part of the country, especially Northwest stations, have an average positive significant correlation with NAO. This correlation can indicate the effect of different phases of this index on the rain systems entered from Mediterranean Sea to Northwest of Iran in autumn. More accurately, positive values of this correlation indicates that values higher than zero in NAO are associated with increasing the intensity and frequency of droughts in Iran, especially the given regions.
During winter months, spatial pattern of correlation is such that finding a certain spatial arrangement is difficult. It is shown that more than 85% of droughts in stations in different delays have weak correlation with NAO. But negative average correlations were observed for some months in different delays both for southeast and northeast. These negative correlations indicate that the negative phase of NAO is associated with reduction in the intensity and frequency of droughts in these two parts of Iran. The only month with positive correlation of these droughts with NOA is January for concurrent delay.
Spring droughts, compared to other seasons’ droughts, have the weakest correlation with NAO. This clearly points out that the oscillations of this index do not play a major role in drought variability of the study stations in this season. In addition, spatial arrangement of few stations that their droughts and wet years have average correlation with NAO, shows no clear pattern. Only in April two-month delay, we observe the density of stations with negative average correlation in the northwest and north of Iran. Perhaps the reason for the weak correlation of NAO with droughts and wet years of Iran' stations in this season is its transitory nature and changing the precipitations from frontal precipitation to other types of precipitation.
The results of correlation analysis related to the relationship between NAO with droughts and wet years also indicated that there is no strong relationship between these two variables in Iran and only an average significant relationship is observed in three-month delay of October and concurrent delay of May which was negative for October and positive for May.
Conclusion
Finally, it can be concluded that NAO cannot explain a large part of droughts and wet-years variability in station or regional scales. Therefore, since climatology of Iran's precipitation is very complex and the synoptic patterns which influence Iran in different months and seasons are different, it is necessary to pay attention to nonlinear models for investigation in this regard.

کلیدواژه‌ها [English]

  • Teleconnection
  • North Atlantic Oscillations index
  • Drought
  • Wet Year - Iran
  1.  

    1. Akbari, T., S. A. Masoudian, 2007, An analysis of relationship between monthly temperature of Iran and teleconnection patterns of northern hemisphere. Research Bulletin of Isfahan University (Humanities), No. 1, pp. 117-132. (In Persian)
    2. Asakereh, H, 2011, Fundamental of Statistical Climatology. Zanjan: Zanjan University press. (In Persian)
    3. Behboodian, J, 2003, Nonparametric Methods. Tehran: Payame Noor University press. (In Persian)
    4. Beniston, M, 2009, Trends in joint quantiles of temperature and precipitation in Europe since 1901and projected for 2100. Geophysical Research Letters, No. 7, pp. 1-6.
    5. Darand, M., H. Rahmani, 2016, Detecting the impacts of teleconnection patterns on Kurdistan province temperature. Journal of Geography and Environmental Studies, No. 5, pp. 117-134. (In Persian)
    6. Fatehi Marj, A., A. Borhani Darian., M. H. Mahdian, 2006, Forecasting seasonal rainfall using teleconnection pattern case study: Orumiyeh Lake Basin. Journal of Water and Soil Science, No. 3, pp. 45-58. (In Persian)
    7. Gandomkar, A., Y. Tolouei., K. Esmaeili., R. Dehgani., R. Pourgholami, 2016, Studying effect of North Atlantic Oscillation (NAO) on precipitation of Ardabil station. International conference on sustainable development, strategies and challenges with a focus on agriculture, natural resources, environment and tourism, Tabriz, Iran. (In Persian)
    8. Gavidel Rahimi, Y., M. Farajzadeh Asl., D. Hatami Zarneh, 2016, Analysis of relationship between North Sea-Caspian teleconnection pattern and minimum temperatures in Iran. Journal of Geographic Space, No. 52, pp. 137-159. (In Persian)
    9. Gavidel Rahimi, Y., M. Farajzadeh Asl., S. Kakapor, 2014, Investigation of North Sea-Caspian teleconnection pattern effect on autumn rainfall fluctuations in west and northwest regions of Iran. Journal of geography and planning, No. 49, pp. 217-230. (In Persian)
    10. Gavidel Rahimi, Y., D. Hatami Zarneh., M. rezaei, 2014, The role on North Sea-Caspian upper atmospheric teleconnection pattern (NCP) in temporal variability of rainfall in southern coastal of Caspian Sea. Journal of Geographical Sciences, No. 31, pp. 29-46.
    11. Hurrell, J. W, 1995, Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, No. 269 (5224), pp. 676-679.
    12. Khosravi, M., E. Mesgari, 2017, Spatial analysis of relationship between teleconnection patterns and monthly temperature of northwest of Iran. Geography and Territorial Spatial Arrangement, No. 21, pp. 203-214. (In Persian)
    13. McKee, T. B., N. J. Doesken., J. Kleist, 1993, The relationship of drought frequency and duration to time scales. 8th Conference on Applied Climatology, 17-22 January, Anaheim, USA.
    14. McKee, T. B., N. J. Doesken., J. Kleist, 1995, Drought monitoring with multiple time scales. In 9th AMS conference on Applied Climatology, 15-20 January, Dallas, USA.
    15. Mazidi, A., M. Fatemi., Narangi Fard, M, 2015, Analyzing the Relationship between the Patterns of tele-connection with dry and wet Periods at synoptic stations of Central Iran. The 1st International Conference on Geographical Scinces (ICGS2015), Kharazmi Advanced Institute of Science and Technology, Shiraz, Iran. (In Persian)
    16. Rahimi, D., K. Abdollahi., S, Hasheminasab, 2016, Identify Tele-connection Patterns affecting on Rainfall in Karoon Basin. Iranian Journal of Ecohydrology, No. 1, pp. 95-105. (In Persian)
    17. Salahi, B., Z. Hajizadeh, 2013, An analysis on relationship between North Atlantic Oscillation and sea surface temperature of Atlantic Ocean with rainfall & temperature variability in Lorestan province. Geographical Researches Quarterly Journal, No. 3, pp. 119-130. (In Persian)
    18. Salahi, B., A. M. Khourshiddoust., Y. Ghavidel Rahimi, 2007,Linking between oscillations of North Atlantic atmospheric-oceanic circulation and droughts in East Azerbaijan. Geographical Research Quarterly, No. 60, pp. 147-156. (In Persian)
    19. Sen, O. L., A. Unal., D.  Bozkurt., T. Kindap, 2011, Temporal changes in the Euphrates and Tigris discharges and teleconnections. Environmental research letter, No. 6, pp. 1-9.
    20. Turkes, M., E, Etlat, 2005, Climatological responses of winter precipitation in Turkey to variability of the North Atlantic oscillation during the period 1930-2000. Theoretical and Applied climatology, No.76, pp. 31-40.
    21. Uppenbrink, J, 1997, Nota bene: Climate - Seasonal climate prediction. Science, No. 277, p. 1952.
    22. Wallace, J. M., D. S. Guzzler, 1981, Teleconnections in the geo-potential height field during the Northern hemisphere winter. Monthly weather review, No. 109, pp. 784-812.
    23. Wattes D. G., M. B. Douglas, M. B, 1988, Nonlinear regression analysis and its applications. Michigan: Wiley Press.

    24. Zoljoodi, M., B. Sanaei., P. Ghafarian, 2017, Studying the relationship between wet and dry periods of Urmia Lake basin and teleconnection pattern of North Atlantic Oscillations. Geographical Researches Quarterly Journal, No. 2, pp. 106-119. (In Persian)