خوشه بندی و تحلیل روند تغییرات تراز میانی جو در دهه‌های اخیر

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه آموزشی جغرافیا، دانشگاه آزاد اسلامی واحد اهر

چکیده

به منظور واکاوی تغییرات زمانی ارتفاع تراز میانی جو، داده های میانگین ماهانه و سالانه ارتفاع این تراز در بازه زمانی 1972-2016 از داده های شبکه ای مرکز ملی پیش بینی محیطی و تحقیقات جوی امریکا( NCEP/NCAR )با تفکیک مکانی 5/2*5/2 درجه طول و عرض قوسی ودر محدوده مکانی°40 غربی -°70 شرقی و °10 - °60 شمالی مورد استفاده قرار گرفت. استفاده از روش خوشه بندی و تکنیک وارد، دو گروه مجزا از آرایش توپوگرافی تراز میانی جو برای روزهای مورد مطالعه را بدست آورد که اولی با تعداد روزهای غالب حاکی از تاثیرپذیری کل محدوده از فعالیت موج های متوالی فرود بلند مدیترانه و دومی حاکی از غالبیت پرارتفاع جنب حاره (روزهای گرم سال)می باشد. با به کارگیری روش گرافیکی من- کندال مشخص گردید که تراز میانی جو به ویژه در دهه آخر دوره مورد مطالعه به شکل معنی داری افزایش یافته است. این افزایش برای ماه های تابستانی نیز معنی داری بوده وتنها در ماه های پاییزی روند خاصی از تغییرات در این تراز ملاحظه نگردید.  افزایش تراز میانی جو می تواند منجر به کاهش ناپایداری و وقوع بارش به ویژه در ماههای تابستانی و زمستانی و تشدید روند افزایش دما در سطح زمین در محدوده مورد مطالعه گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis and clustering of Changes on the Atmospheric Middle-Level in Recent Decades

نویسنده [English]

  • Karim Amini nia
چکیده [English]

Changes in the atmospheric circulation patterns behavior, such as abnormal patterns on the atmospheric middle and other levels, are known as indicators of climate change and global warming. To assess timely changes of the atmospheric middle-level altitude, the mean monthly and annual data of this altitude for the years 1972 to 2016 were obtained from the National Center for Atmospheric Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) (NCEP/NCAR) with a spatial resolution of 2.5 × 2.5 degrees of arc length and width, and in the spatial range of 40 (west) to 70 (east) degrees and 10-60 degrees north. Two separate groups of the topographic arrangement of the atmospheric middle-level were obtained for the studied days, after applying the Cluster analysis and the Ward method: the first group shows the effect of consecutive waves activity of the Mediterranean long through on the whole range, and the second group represents the dominance of sub-tropical high-altitude (hot days of the year). The Mann-Kendall graphical method showed that the atmospheric middle-level altitude has been increased significantly, especially in the last decade of the study period. This increase was significant for the summer months, whereas there were no particular changes in this level only in the autumn months. Inconstancy and precipitation especially in the summer and winter months and also exacerbating the ground-surface temperature (GST) in the studied area can be due to an increase in the atmospheric middle-level.
Introduction:
Investigating the behavior of atmospheric circulation during different periods can broaden our knowledge of large-scale changes in the climate. Based on recent Intergovernmental Panel on Climate Change assessments, the increase in greenhouse gases and other human activities will lead to the warming of the troposphere, atmosphere temperature drop, thickening of tropopause, less atmospheric circulation activity in the tropics, migration of atmospheric disturbance from poles toward middle latitudes, increasing of precipitation in tropical areas, etc. Since the middle-level atmosphere has the greatest effect on the occurrence of atmospheric phenomena in the surface of the earth, many studies have investigated the temporal and spatial changes of this level across the world. Most of these studies confirm the changes in the geopotential height anomalies at 500 hPa in some areas and identify them useful in forecasting temperature and precipitation variables, as well as phenomena such as flood and frost.
Methods and Materials:
This study explored changes at 500 hPa using daily data of the US National Center for Atmospheric Research for the period from 1972 to 2015. Using cluster analysis, the behavioral patterns at 500 hPa were analyzed for a 44-year period, and the Mann-Kendall graphical test was used to identify the trend of change and its significance.
Results and Discussion:
The clustering results show two main long-term patterns in middle-level atmosphere. In the first group with more days, the domination of the Mediterranean high landing over a large part of the study area and the its penetration toward Iran is noteworthy, whereas in the second group with far less days, there is the dominance of the sub-tropical high with one of its bulges over a vast area of Iran, which leads to sustainability and hot air in the warm days of the year. The analysis of the trend of changes in the middle-level atmosphere height using the Mann-Kendall method indicates significant changes in the study area during the period; with the significant increase being recorded for the last decade (after 2000) during the annual period and in the summer months of July and August. These results also showed no significant trends in the autumn, especially in October and November, either individually or collectively.
Conclusion:
One of the results of climate change is the change in atmospheric patterns such as sea level pressure and the height of different layers of the atmosphere. The results show that the middle-level atmosphere height, which is a key components in atmospheric disturbances and precipitation, or lack thereof, especially in regions such as Iran, has experienced increase in various periods and throughout the statistical period under study. This height increase can lead to a decrease in rainfall and an increase in the duration and severity of droughts in these areas. On the other hand, occurrence of extreme temperature and precipitation anomalies in these areas is another result of this height increase. A suitable solution for dealing with its adverse effects is the optimal management of water resources.

کلیدواژه‌ها [English]

  • Altitude
  • Middle-Level Atmosphere
  • Trend
  • Mann-Kendall
  • Iran
 
1-Alijani, B. (2002). Variations of 500 hPa flow patterns and their relationship with the climate of Iran. Theor Appl Climatology.Vol.72, PP.41-52.
2-Alijani, b., mahmodi, p., choghan, a.( 2012), Investigation of annual and seasonal precipitation changes in Iran using nonparametric method.  journal of climate research, vol.9, pp.23-42.
3-Allen, R. J., and S. C. Sherwood. (2008). Warming maximum in the tropical upper troposphere deduced from thermal winds. Nature Geoscience, Volume 1, Issue 6, pp. 399-403.
4- Ataei, H. (2009). 500hpa Map Patterns Associated with Low Precipitation Years in Iran. Geography and Environmental Planning, Vol.33, PP.43-5.
5-Bartzokas, A., Lolis, C.J. and D.A. Metaxas. (2003). The 850HPA relative vorticity centers of action for winter precipitation in the Greek area, DOI: 10.1002/joc.909, Int. J. Climatol., 23, pp. 813-828.
6-Bell GD, Bosart LF. (1989). A 15-year climatology of Northern Hemisphere 500 mb closed cyclone and anticyclone centers. Monthly Weather Review,117, 2142 – 2163.
7-Darand, M. (2014). Detection of Geo-
Circulation Atmospheric Patterns Impacting Iran Climate. Physical Geography Research, Volume 46, Issue 3, autumn 2014, Page 349-374.
8- Darand,M. (2015). Variation of Iran’s air temperature from Earth surface to lower stratosphere as an index of climate change during 1979-2014”. Journal  Of  Earth And Space Physics, Volume 41, Issue 2, Summer 2015, Page 337-350.
9-Ding,R. and Li,G. and Jaha,K. (2008). Decadal change of January and July persistence of monthly mean 500 hPa geopotential height anomalies. Geophysical Research Letters, Vol. 35, L15702, Doi: 10.1029/2008gl034137.
10-DuNkelon, A. and J. Jacobeit. (2003) Circulation dynamics of Mediterranean precipitation variability 1948-98. Int. J. Climatol, 23, pp. 1843-1866.
11-Gillett, N. P., Zwiers, F. W., Weaver, A. J. and Stott, P.A. (2003).  Detection of Human Influence on Sea-level Pressure. Nature, Vol. 40, No. 422, PP. 292˚ 294.
12-Golizadeh, H., Amininia, K. (2015). Investigating Time Changes Of The Reference Evapotranspiration In Tabriz. Geographic Space, No. 15, Pp. 19-35.
13-Hoerling, M. P., Hurrell, J. W. and Xu, T. (2001). Tropical Origin for Recent North Atlantic Climate Change. Science, Vol. 5514, No. 292, PP. 90-92.
14-Hu, Y., And Q. Fu. (2007). Observed Poleward Expansion of the Hadley Circulation Since 1979. Atmospheric Chemistry and Physics, Vol. 7, PP. 5229˚ 5236.
15-Lolis, C.J., Metaxas, D.A. and A. Bartzokas. (2008). On the intra-annual variability of atmospheric circulation in the Mediterranean region. Int. J. Climatol, 28, pp. 1339-1355.
16-Lucarini, V. and Russell, G.L. (2002). Comparison of mean climate trends in the Northern Hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean models forced runs. Journal of geophysical research, Vol.107. D15, 4269, 10.1029/2001JD001247.
17-Lu, J., C. Deser, and T. Reichler. (2009). Cause of the widening of the trop-ical belt since 1958. Geophys Research. Letters, 36, L03803, DOI:10.1029/ 2008GL036076.
18-Maheras, P., Patrikas, I., Karacostas, Th. And C. Anagnostopoulou. (2000). Automatic classification of circulation types in Greece: methodology, description, frequency, variability and trend analysis. Theoretical and Applied Climatology, 67, Issue 3, pp. 205-223.
19-Maheras, P., Flocas, H.A., Patrikas, I. and C. Anagnostopoulou. (2001). A 40 year objective climatology of surface cyclones in the Mediterranean region: Spatial and temporal distribution. Int. J. Climatol., 21, pp. 109-130.
20- Makrogiannis, T., and H. Sahsamanoglou. (1992). Analysis of mean temperature variations at the500/1000hPa layer over Europe, 1945–88. Theoretical and Applied Climatology, Volume 45, Issue 3, pp. 193 -200.
21-Marshall, G.J. (2002). Trends in Antarctic Geopotential Height and Temperature: A Comparison between Radiosonde and NCEP–NCAR Reanalysis Data. Journal of Climate, Vol.15, No. 6, PP. 659-674.
22-Mohammadi, B. (2011). Annual Rainfall Analysis Of Iran. Geography And Environmental Planning,No. 43, Pp.95-106.
23-Moradi, M., Tajbakhsh, S., Ranjbar, A. (2016). 5 Th Regional Conference on Climate Change, 25-26 january,Tehran.
24-Papadopoulos, V.P., Abualnaja, Y., Josey, S.A., et al. (2013). Atmospheric forcing of the winter air-sea heat fluxes over the Northern Red Sea. Journal of Climate, 26, pp. 1685-1701.
25-Philandras, C., P. Nastos, I. Kapsomenakisand C. Repapis. (2015). Climatology of upper air temperature in the Eastern Mediterranean region. Atmospheric Research, Volume 152, pp. 29-42.
26-Seidel, D. J., Fu, Q., Randel, W. J. and Reichler, T. J. (2008). Widening of the Tropical Belt in a Changing Climate. Nature Geosci, Vol. 1, No. 1, PP. 21˚ 24.
27- Shirvani, A. (2014). Trend sequential analysis of the air temperature over Iran and its comparison with global warming. Iranian Congress of  Soil and Water Engineering management, Tehran University, 2-3Ordibehest, pp. 92-101.
28-Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden and P. Zhai. (2007).  Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.