بررسی دوره برگشت سریعترین باد سالانه در ایستگاه بوشهر

نوع مقاله : مقاله پژوهشی

نویسنده

دکترای هواشناسی، استادیار و عضو هیات علمی پژوهشکده هواشناسی

چکیده

در این پژوهش سریعترین سرعت باد سالانه ایستگاه بوشهر در دوره آماری 2015-1951 بررسی شد و با استفاده از رابطه گامبل نوع اول، دوره برگشت چند ساله برای این کمیت بدست آمد. برای محاسبه فراسنجهای مقیاس و محل رابطه گامبل، از روشهای گرافیکی، و عددی شامل کمترین مربعات، گشتاورها، تقرب آماری مرتبه ای و بیشینه درشتنمائی استفاده شد. نتایج برآورد فراسنجهای مقیاس و محل برای محاسبه دوره برگشت سریعترین باد ایستگاه بوشهر به روش گامبل نوع اول نشان داد که بر پایه میانگین مربع خطاها، روشهای گشتاورها، کمترین مربعات، گرافیکی، تقرب آماری مرتبه ای و بیشینه درشتنمائی به ترتیب کمترین تا بیشترین میانگین مربع خطاها را دارا می باشند. در نتیجه روش گشتاورها برای محاسبه دوره برگشت سریعترین باد ایستگاه بوشهر در دوره آماری انتخابی از دقت بیشتری برخوردار است. بر این اساس از روش گشتاورها برای محاسبه دوره برگشت سریعترین باد سالانه ایستگاه بوشهر  استفاده شد.از محاسبات دیده شد که سریعترین باد ایستگاه بوشهر با دوره برگشت25 ساله،7/29 متر بر ثانیه، 50 ساله، 8/32 متر بر ثانیه،  100 ساله، 8/35 متر بر ثانیه و با دوره برگشت 1000 ساله، 9/45 متر بر ثانیه برآورد شده است. بعلاوه بیشترین سرعت باد روزانه ایستگاه بوشهر0/39 متر بر ثانیه است که در سال 1959 رخ داده است که دوره برگشت آن 2/207 سال است. در سال 2014 نیز سریعترین سرعت باد ایستگاه بوشهر 35 متر بر ثانیه ثبت شده است که این مقدار نیز بر اساس روش گشتاورها دوره برگشت 9/82 ساله دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of return period annual fastest wind speed in Bushehr stations

نویسنده [English]

  • Mohammad Moradi
Atmospheric Science and Meteorological Research Center (ASMERC)
چکیده [English]

In this paper, data of the annual fastest wind speed in Bushehr station in south of Iran were used and graphical and numerical methods were applied to compute scale and local parameters of the Gumbel Distribution Function (GDF). Then, different return periods for the annual fastest wind speed were estimated. In the estimation process of local and scale parameters, Standard analytical procedures such as Method of Moments (MOM), Method of Order Statistics Approach (OSA), Least Squares Method (LSM) and Maximum Likelihood Method (MLM), were used.  
Numerical computations show that the Method of Moments (MOM) provides better results compared to other methods and computed values for the scale and local parameters in estimation of annual fastest wind speed in Bushehr station are the best estimation.
Computations of the annual fastest wind speed for return periods of 25, 50,100 and 1000 years, estimated to 29.7 m/s, 32.8 m/s, 35.8 m/s and 45.9 m/s, respectively. Moreover, we can say that, in the confidence level of 95%, every 207.2 and 82.9 years, annual fastest wind speed of 39 m/s and 35 m/s can happen, respectively. 
 

کلیدواژه‌ها [English]

  • least square
  • Maximum Likelihood
  • Order Statistics Approach
  • Method of Moments
  1. Atomic Energy Regulatory Bord (AERB), 2008, Extreme values of meteorological parameters-AERB safety guide no. NF/SG/S-3.
  2. Beskow, S., T.L., Caldeira, C.R., Mello, L.C., Faria and H.A.S.,Guedes, 2015, Multi parameter probability distributions for heavy rainfall modeling in extreme southern Brazil. Journal of Hydrology: Regional Studies 4 (2015) 123–133.
  3. El-shanshoury,G.I and A.A,Ramadan,2012,Estimation of extreme value analysis of wind speed in North-Wetern coast of Egypt. Arab Journal of Nuclear science and application,45(4),265-274.
  4. Karl, k. and B., Baker,2000, The record breaking global temperature of 1997 and 1998: Evidence for an increase in the rate of global warming? Geophys. Res. Lett., 27, 719–72.
  5. Duda,R.O., P.E. Hart, and D.G. Stork, 2001, Pattern Classification, New York: John Wiley.
  6. Gumbel, E.J.,1960, Statistics of extremes, 2nd Edition, Columbia Univ. Press,New York,USA.
  7. Hasan, H. and W.C., Yeong, 2010, Extreme Value Modeling and Prediction of Extreme Rainfall. A Case Study of Penang, AIP Conf. Proc, V1309, p372-393.
  8. Hasan, H., N.F., Ahmad Radi, and S., Kassim, 2011, Modeling the Distribution of Extreme Share Return in Malaysia Using Generalized Extreme Value (GEV) Distribution, AIP Conf. Proc, V1450, p82-89.
  9. Hasan, H., N.F., Ahmad Radi, and S., Kassim,2012, Modeling of Extreme Temperature Using Generalized Extreme Value (GEV) Distribution: A Case Study of Penang, World Congress on Engineering 2012. Vol. 1, p181-186.

10. Hasan,H., S., Norfatin, and S., Kassim, 2013, Modeling annual extreme temperature using generalized extreme values distribution: A case study in Malaysia. AIP Conf. Proc. 1522, p1195-1203.

11. Hasan, H. and W.C., Yeong, 2014, Extreme value modelling and prediction of extreme rainfall: A case study of Penang. AIP Conference Proceedings. V1309, pp. 372-393.

12. Lieblein, J., 1974, Note on simplified  estimates for Type I extreme  value distribution  -  NBSIR  75-647,  National  Bureau  of  Standards,  U.S. Department of Commerce, Washington D.C.

13. Karmakar, S., and S.P., Simonovic,2009, Bivariate flood frequency analysis, Part 2: a copula-based approach with mixed marginal distributions. Journal of Flood Risk Management, 2(1), 32-44, 2009.

14. Mahdi, S.and F., Ashkar, 2004, Exploring generalized probability weighted moments, generalized  moments and maximum likelihood estimating methods in two-parameter Weibull model, Journal of Hydrology 285: 62–75.

15. Meyer, C.M. and M., Woodroofe, 2004, Consistent maximum likelihood estimation of a unimodal density using shape restrictions. Canad. J. Statist. 32 85–100.

16. Myung,I.,J.,2003,Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology 47 (2003) 90–100.

17. Rasmussen, P.F. and N., Gautam,2003,Alternative PWM-estimators of the Gumbel distribution. Journal of Hydrology, Vol. 280, Nos. 1-4, Pp 265-271.

18. Revadekar.J.V. and Kulkarni.Ashwini. 2008: The ElNino- Southern Oscillation and winter precipitation extremes over India. Int.J.Climatol. 28: 1445-1452.

19. Sami,G., D.,Hadda, and K., Mehdi, 2016, Estimation and mapping of extreme rainfall in the catchment area of Batna(ALGERIA). Analele Universităţii din Oradea, Seria Geografie. 1: 107-117.

20. Seleshi. Y. and Camberlin. P. 2006: Recent Changes in dry spll and extreme rainfall events in Ethiopia. Theor. Appl. Climatol. 83: 181-191.

21. Shi, P., X., Chen, S.,Qu, Z.,Zhang and J.,Ma , 2010. Regional frequency analysis of low flow based on L Moments: Case study in karst area, Southwest China. Journal of Hydrologic Engineering 15(5): 370–377.

22. Shabri, A., 2002, A comparison of plotting formulas for the pearson type iii distribution. Jurnal Teknologi , 36(C) Jun. 2002: 61–74.

23. Taghavi, F. , H., Mohammadi , 2007 , Study the Return Period of Extreme Climate Events for Reduction of Environmental Impacts. Journal of environmental studiey,43,11-20.

24. Vivekanandan, N., F.T., Mathew, and S.K., Roy, 2012, Modelling of wind speed data using probabilistic approach. Journal of power and river valley development,Vol 62,No,3-4,Pp 42-45.

25. Vivekanandan, N. and S.K., Roy, 2012, Comparison of estimators of Gumbel distribution for modeling wind speed data. Journal of data mining,Vol 2,No,4,Pp 11-15.

26. Vivekanandan, N., S.K., Roy .and R.S., Jagtap, 2012, Assessment of rainfall and temperature using OSA estimators of extreme value distributions. Journal of software engineering and soft computing,Vol 2,No,3,Pp 16-21.

27. Vivekanandan, N. 2015, Modelling of annual extreme rainfall, temperature and wind speed Using OSA of EV1 and EV2 distributions. International Journal of Innovative Research in Computer Science & Technology, 3(4):57-60.

28. Vivekanandan, N. 2016, Evaluation of Parameter Estimation Methods of Probability Distributions for Modelling of Surface Temperature. Journal of Scientific and Engineering Research, 2016, 3(1):74-81.

Zhang, X., W. D. Hogg, and B. R. Bonsal, (2001): A cautionary note on the use of seasonally varying thresholds to assess temperature extremes. Climatic Change, 50, 505–507