تحلیل الگوی رفتاری سناریو های آب و هوایی و تاثیر آن بر تغییرات سطح آب دریای خزر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب و هوا شناسی ، گروه جغرافیای طبیعی ، دانشگاه آزاد اسلامی ، واحد علوم و تحقیقات ، تهران ، ایران

2 استاد آب و هواشناشی دانشگاه خوارزمی و مدیر قطب علمی تحلیل فضایی مخاطرات محیطی، تهران، ایران

3 استاد آب و هوا شناسی ، گروه جغرافیای طبیعی ، دانشکده علوم زمین ، دانشگاه شهید بهشتی ، تهران، ایران

چکیده

رویداد های فرین ناشی از تغییرات آب و هوایی در پیش بینی تراز سطح دریا اهمیت زیادی دارند. در منطقه مورد مطالعه، در آینده فراوانی و شدت رویدادهای فرین دما و بارش افزایش خواهند یافت. نمایه های فرین، نشان دهنده تغییر مقادیر فرین دما و بارش نسبت به دوره پایه 2010-1981 بوده است و این امر، نشان دهنده مجموع بارش و یا دمایی بیش از صدک 95 دوره پایه است. ضریب تغیرات بارش و دما برای کل حوضه آبگیر خزر مثبت است و در ناحیه جنوبی الگوی نامنظمی بر آستانه های بارش حاکم است. افزایش سطح دریا  (SLR ) یک نگرانی عمده برای نواحی ساحلی است. پیش بینی دقیق سطح دریای خزر برای آینده غیر ممکن است، اما مدل های کامپیوتری می توانند پیش بینی احتمالی تغییرات آینده را ارائه دهند. این مشکل با استفاده از یک سیستم مدل یکپارچه به نام SIMCLIM با دقت مکانی 1/0 درجه در1/0 درجه در خوشبینانه ترین حالت یعنی RCP4.5 و بدبینانه ترین حالت یعنی RCP8.5 مورد بررسی قرار گرفته است. پیش بینی های انجام شده نشان می دهد که افزایش سطح دریای خزر به آرامی تا سال 2100 افزایش می یابد. اگر افزایش حداکثر پیش بینی شده رخ دهد، سواحل خزر آسیب پذیرترین جابجایی ساحلی را تجربه خواهد کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the behavioral pattern of climate scenarios and its impact on the Caspian sea level changes

نویسندگان [English]

  • FArdin saberi Louyeh 1
  • bohlol Alijabni 2
  • Shahriar Khaledi 3
1 PhD Student, Department of Geography, Islamic Azad University
2 climatology Professor at Kharazmi University and Director of the Space
3 Climate Professor, Department of Natural Geography , Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Conclusion
The present research, through applying precipitation and temperature extreme events, illustrates that percent of forecasted precipitation and temperature changes in comparison with the average base period of 1981-2010, in 2030, 2060, 2100 will increase procedurally. Spatial variability, and annual coefficient of variation in various regions are different. north, western north, eastern north and east will include the least temperature fluctuations, and the highest percent of precipitation with the highest coefficient of variation which conveys chronological period precipitation distribution with disordered accumulation and more local difference in this region in comparison with other regions. Then, Ghafghaz mountainous region has the highest percent of precipitation rise with suitable scattering in a year. The southern region of Caspian sea will experience the most rise of temperature and lowest percent of precipitation rise. High coefficient of variation in this area illustrates abnormal and disordered pattern on the threshold of precipitation.
Sea level rise with three estimation regression, low average, high, on the basis of sea level ascending pattern equation For both scenarios, fluctuations in sea level based on subsidence Caspian pit seabed was calculated. In general, average annual sea level is increasing which is about 1.22 cm each year for scenario RCP8.5, and 0.93 cm yearly for scenario RCP4.5. Through this article, it can be found that changes in coastal region is unavoidable. However, inhabitants in this region have no system or not yet developed which can help them to adopt themselves with climate change issue. This study illustrated the significant effect of coastal climate which through climate change how society and economical activities are influenced.

کلیدواژه‌ها [English]

  • Sea level rise
  • Caspian Basin
  • Emission scenarios
  • Extreme event
  • Coefficient of variation
  1. Alaei Taleghani, Mahmoud. 2002 . Geomorphology of Iran. Gomes publishing
  2. Alijani, Bohlol . 1393. The philosophical foundations of environmental hazards. Quarterly Journal of Environmental Spatial Analysis, Vol. 1: 1-15
  3. Asgari Ali .2011. Arcgis spatial analysis. First Edition. Tehran City Municipality Telecommunications Communication Technology Organization.
  4. Alejandra, R.; Enríquez, Marta Marcos, Amaya Álvarez-Ellacuría, Alejandro Orfila, and Damià Gomis. 2017.   Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (western Mediterranean). Nat. Hazards Earth Syst, 17: 1075-1089
  5. Arpe , K. .2015. Building a forecast model to predict the Caspian Sea level, An international initiative in hydrology.
  6. Atalay, A. 2014. Assessmwnt of sea level rise for coastal zone management: vulnerability of fethiye bay, middle east technical university.
  7. Bao, Y. 2015. Coupling the simclim system with crop simulation models for determing adaptation strategies under a changing climate: an application for maize productionin the outhastern Usa, Athens, Georgia.
  8. Bao, Y.; G. Hoogenboom, R McClendon, P Urich, 2015, ‘Soybean production in 2025 and 2050 in the southeastern USA based on the SimCLIM and the CSM-CROPGRO-Soybean models’ Climate Research, vol. 63, issue 1, p 73-89
  9. Chonghua ,Yin.2013. SimCLIM 2013 Data Manual. CLIMsystems.pp 9
  10. Dibaei, Mohammad Hussein; Mehdi Ghorbani Birgani. 2010. Climatic Drought Analysis and Its Role in Wheat Production (Case Study: Shooshtar). National Conference on Management of Water Deficit and Drought Stress in Agriculture, Islamic Azad University, Arsanjan Branch
  11. Eghtesadi, shahir; Rafiee Zahedi. 2011. Study of Factors Influencing the South Ossetian Water Cascade Fluctuations. Journal of Marine Science and Technology, 10: 4-13
  12. Elguindi1, F.; F Giorgi. . 2006. Projected changes in the Caspian Sea level for the 21st century based on the latest AOGCM simulations.
  13. Jedari Eyvazi, Jamshid .1995. Geomorphology of Iran. Payam Noor Publications
  14. Jirawat, P; M  Morshed Ahmad. 2017. Vulnerability of Fishing Communities from Sea-Level Change: A Study of Laemsing District in Chanthaburi Province, Thailand. Sustainability, vol. 9, issue 8: 1-19
  15. IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by Thomas F. Stocker, Dahe Qin, Gian.-Kasper Plattner, Melinda Tignor, Simon K. Allen, Judith Boschung, Alexander Nauels, Yu Xia, Vincent Bex and Pauline. M. Midgley. Cambridge: Cambridge University Press.
  16. Kroonenberg , Salomon ; Mikhail , Lychagin ; N.s.Kasimov . 2008. The Caspian Sea, a natural laboratory for sea-level change. Delft University of Technology, Dept of Geotechnology
  17. Lissner, T.K.; E.M Fischer. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 ◦C and 2 ◦C. Earth Syst. Dyn. 2016, 7, 327–351
  18. Loski, Brett.2015. Sea Level Rise Modeling and the Predicted Change of Coastal Wetland Systems of Wallop’s Island Virginia. shippensburg university
  19. Markovic,et,al. 2013 . Modelling of the Aral and Caspian seas drying out influence to climate and environmental changes . Acta geographica Slovenica, 1-54, 2014
  20. McLeod, E.; B Poulter, J Hinkel, E Reyes & Salm, R 2010, 'Sea-level rise impact models and environmental conservation: A review of models and their applications', Ocean & Coastal Management, vol. 53, no. 9, pp. 507-517
  21. Nicholls, J, Farley. 2013. Modelling of the Caspian Sea. Space and Atmospheric Physics Group Department of Physics Imperial College
  22. Olliver, v.; M. Fontugne, B. Lyonnet, C. Chataigner. 2016. Base level changes, river avulsions and Holocene human settlement dynamics in the Caspian Sea area (middle Kura valley, South Caucasus). Quaternary International.395.2
  23. Panin, G. N.2010. The Caspian Sea Level fluctuations as an example of local /global climatic change Russia.  water problems institute.
  24. Roshan,G.;M Moghbel,S Grab. 2012.  modeling caspian sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations. Iranian J Environ Health Sci Eng.v.9 (1) p 24.
  25. Saleem khan. A;  A. Ramachandran; K. Palanivelu; V. Selvam, 2016. Climate change induced sea-level rise projections for the Pichavaram mangrove region of the Tamil Nadu coast, India: A way forward for framing time-based adaptation strategies. Indian Journal of Geo-Marine Sciences Vol. 45(2): 296-303
  26. Sidorenkov, N., Orlov,I.A.2007. atmospheric circulation pochs and climate changes, hydrometeorological research center of the Russian Federation,P,553.
  27. Slangen, A.B.A; M Carson, C. A. KatsmanR. S. W. van de Wal, A. KöhlL, L. A. Vermeersen, D. Stammer. 2014. Projecting twenty-first century regional sea-level changes. Climatic Change. Volume 124, Issue 1–2, pp 317–332.
  28. Sweet, W.; Park, J.; Marra, J.; Zervas, C.; Gill, S. Sea-Level Rise and Nuisance Flood Frequency Changes around the United States. National Oceanic and Atmospheric Administration. NOAA Technical Report NOS CO-OPS 073, 2014.
  29. Treuer, Galen. 2017. Risk and the Response to Sea Level Rise in South Florida. University of Miami
  30. .UNDP. (2002) The views expressed in this publication are those of the author and do not necessarily represent those of the United Nations or UNDP.Transboundary diagnostic analysis for the Caspian sea. V1. the Caspian environment programe.

 

  1. Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, 2017 . C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep 7, 1399

 

  1. Yousefi Roshan, Mohammad Reza. 2014 . Fluctuations in the level of the Caspian Sea during the period of instrument registration from 1837 to 2014. National Conference on Sustainable Space Development in the Caspian Sea, Mazandaran University, Faculty of Humanities and Social Sciences