بررسی رابطه مراکز فعالیت تاوایی نسبی در خاورمیانه با دمای هوای ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری جغرافیا دانشگاه خوارزمی تهران

2 دکتری جغرافیا، استاد دانشگاه خوارزمی تهران

3 دکتری جغرافیا، عضو هیأت علمی پژوهشگاه هواشناسی و علوم جوّ تهران، دانشیار پایه 12

4 دکتری هواشناسی، عضو هیأت علمی پژوهشگاه هواشناسی و علوم جوّ، دانشیار پایه 20

چکیده

    رابطه دمای هوا در ایران با توزیع تاوایی نسبی در خاورمیانه با استفاده از مقادیر ماهانه تاوایی نسبی در دو تراز 850 و 500 هکتوپاسکال و دمای هوای 97 ایستگاه سینوپتیک کشور (2010-1981) بررسی شد. بدین منظور از روشهای آماری تحلیل مؤلفه های اصلی (PCA) و تحلیل همبستگی کانونیکال (CCA) استفاده شد. ابتدا توسط تحلیل مؤلفه های اصلی، مراکز فعالیت تاوایی نسبی در خاورمیانه تعیین شدند. سپس رابطه این مراکز با دمای هوای ایران توسط تحلیل همبستگی کانونیکال بررسی شد و مناطقی که تغییرات تاوایی نسبی در آن با تغییرات دمایی در ایران رابطه دارد شناسایی شدند. همبستگی کانونیکال بین مراکز فعالیت تاوایی نسبی تراز 500هکتوپاسکال در منطقه ای شامل ایران، عراق و شمال عربستان با دمای هوا در ایران برابر با 0.95 است. همبستگی کانونیکال بین این مراکز در تراز 850هکتوپاسکال نیز با دمای کشور برابر با 0.96 می باشد که بیانگر ارتباط بسیار بالایی بین تاوایی نسبی این دو  تراز در منطقه خاورمیانه و دمای هوا در ایران است. شاخص بار متقابل یا همبستگی واقعی بین تاوایی نسبی تراز 500 و 850 هکتوپاسکال با دمای ایران به ترتیب 0.93- و 0.93 می باشد. برای تفسیر نتایج، نقشه توزیع همبستگی بین مؤلفه کانونیکال تاوایی نسبی با مقادیر واقعی آن در خاورمیانه ترسیم شد. مقایسه این نقشه با توزیع ماهانه تاوایی نسبی، شباهت بسیار زیاد آن را با توزیع تاوایی نسبی در ماه های ژوئن، ژوئیه و اوت در هر دو تراز  نشان می دهد. بدین معنی که تاوایی نسبی و دمای هوا در فصل گرم سال بالاترین همبستگی را با هم نشان می دهند. در فصل گرم تاوایی نسبی منفی در تراز میانی، حضور یک پرارتفاع و تاوایی نسبی مثبت در تراز نزدیک زمین، حضور یک کم فشار گرمایی سطح زمین را نشان می دهد که هر دو با افزایش دمای هوا در ایران همراهند.

کلیدواژه‌ها


عنوان مقاله [English]

On the relation between relative vorticity centers of action in the Middle East and air temperature in Iran

نویسندگان [English]

  • Azita Amiri 1
  • Bohlol Alijani 2
  • Zahra Beygom Hejazizadeh 2
  • Ebrahim Fattahi 3
  • Mahid Azadi 4
1 PhD. Student of Geoghraphy, Kharazmi University, Tehran
2 PhD. of Geography, Kharazmi University, Professor
3 PhD. of Geography, Atmospheric Science and Meteorological Research center, Associate Professor, grade 12
4 PhD. Meteorology, Atmospheric Science and Meteorological Research center, Associate Professor, grade 20
چکیده [English]

Recognizing the interactions of the large-scale components of atmospheric circulation creates an appropriate capacity to examine the regional climate variability and improve description of land-atmosphere connections. Assessment Iran vulnerability to climate fluctuations is very important. Part of this recognition will be achieved by assessing the components of the atmospheric circulation. The relative vorticity distribution is an important index of synoptic motion in mid latitudes. Regions of positive relative vorticity are associated with cyclonic storms in the Northern Hemisphere. Thus the distribution of relative vorticity is an excellent diagnostic for weather analysis. Vorticity, the microscopic measure of rotation in a fluid, is a vector field defined as the curl of velocity. Relative vorticity is a measure of the intensity and direction of spin in a circular movement, which is performed by a unit volume of air around the vertical axis perpendicular to the plane over which this rotation occurs. Relative vorticity is a good quantity for studying atmospheric changes, because it presents the main order of magnitude of daily cyclonicity or anticyclonicity.

کلیدواژه‌ها [English]

  • Relative Vorticity
  • Temperature
  • Canonical correlation analysis
  • Middle East
  • Iran
  1. Ahmed M. El Kenawi, M. F. McCabe, G. L. Stenchikov and J. Raj, 2014, Multi-decadal classification of synoptic weather types, observed trends and links to rainfall characteristics over Saudi Arabia, doi: 10.3389/fenvs.2014.00037, frontiers in environmental science, Original Research Article, 2, 37, pp. 1-15.
  2. Ahrens, C. Donald, 2011, Meteorology today: An introduction to weather, climate and environment, translated by Babaee, M., (1391), M. R., Aeej press. Edition 8, ISBN: 978-964-970-310-7, 718 papers.
  3. Amiri, A., Alijani, B., Hejazizade, Z., Fattahi, E., Azadi, M., 2017 (1396), On the intra-annual variability of relative vorticity in the Middle East and the Eastern Meditteranean, J. climate research, 29, pp. 55-71.
  4. Amiri, A., 2017 (1396), The Relationship between Spatiotemporal Distribution of Relative Vorticity and Climate of Iran, PhD Thesis in Climatology, Khurazmi University, advisor: Dr. Alijani, B., 160 papers.
  5. Buishand, T., 1982, Some methods for testing the homogeneity of rainfall records, J. Hydrol., 58, pp. 11-27.
  6. Darand M, Garcia-Herrera R, Asakereh H, Amiri R, Barriopedro D., 2018, Synoptic conditions leading to extremely warm periods in Western Iran, doi: 10.1002/joc.5177,  Int. J. Clim., 38, 1, pp. 307-319.
  7. Fatemi,M, Omidvar, K, Hatami K, Narangifard M., 2015, Using Principle Component Analysis in identifying synoptic patterns of wet periods in central Iran, doi: 10.4172/2157-7617.1000309, J. Earth SciClim Change, 6, 9, pp. 1-8.
  8. Fekadu K., 2015, Ethiopian seasonal rainfall variability and prediction using Canonical Correlation Analysis (CCA), doi: 10.11648/j.earth.20150403.14, Earth Sciences, 4, 3, pp. 112-119.
  9. Flocas, H.A., Maheras, P., Karacostas, T.S., Patrikas, I. and C. Anagnistopoulou, 2001, A 40-year climatological study of relative vorticity distribution over the Mediterranean,doi: 10.1002/joc.705, Int. J. Clim., 21, pp. 1759-1778.
  10. Holton, J.R. and Hakim, G.J. 2012, An introduction to dynamic meteorology, ISBN: 9780123848673, Elsevier, Academic press, Fifth edition, 552 pages.
  11. Hosseini, S. M. and Movahedi, S., 2014, Sea level pressure climatology in Black sea region, DOI: 10.5267/j.mal.2013.12.035, Management Science Letters, 4, pp. 227-236.
  12. Hotelling, H., 1936, Relations between two sets of variates, doi: 10.2307/2333955, Biometrika, 28, 3/4, pp. 321-377.
  13. Jolliffe I.T., 2013, Principal Component Analysis, Springer Inc, New York, ISBN: 978-1-4757-1906-2.
  14. Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang,J.J., S.K., Fiorino, H.M. and G.L. Potter, 2002, NCEP-DOE AMIP-II Reanalysis (R-2), Bulletin of the American Meteorological Society, Nov 2002, pp. 1631-1643.
  15. Kistler, R., E. Kalnay and 11Co-authors, 2001, The NCEP-NCAR 50-year reanalysis: Monthly means cd-rom and documentation, Bulletin of the American Meteorological Society, 82, 2, pp. 247-268.
  16. Levy, D., 2010, Introduction to numerical analysis, 127 pages.
  17. Lionello, P. and 17 Co-authors, 2012, The climate of the Mediterranean region, From the past to the future, University of Saleno, Lecce Italy, Elsevier Inc., ISBN: 978-0-12-391477-4, 496 papers.
  18. Lolis, C.J., Metaxas, D.A. and A. Bartzokas, 2008, On the intra-annual variability of atmospheric circulation in the Mediterranean region, doi: 10.1002/joc.1634, Int. J. Clim., 28, pp. 1339-1355.
  19. Marosz, M., 2009, Seasonal variability in the response of the airflow characteristics to the changes in the macro-scale westerly flow intensity over Europe, doi:10.1002/joc.1708, Int. J. clim., 29, pp. 481-500.
  20. Mofidi, A. and A. Zarrin, 2012(1391), Analysis of nature, structure and temporal variance of summertime large scale atmospheric circulation on the southwest Asia, J. Research of climatology, 3, 11, pp. 15-40.
  21. Nicholls, N., 1987, Theuse of canonical correlation to study teleconnections, doi: 10.1175/1520-0493(1987)115, Monthly Weather Review, 115, 2, pp. 393-399.
  22. Omidvar K, Fatemi M, Narangifard M, Hatami K., 2016, A study of the circulation patterns affecting drought and wet years in central Iran,doi: 10.1155/2016/1843659, Advances in Meteorology, 2016, pp. 1-14.
  23. Perron, M. and Sura P., 2013, Climatology of non Gaussian atmospheric statistics, doi: 10.1175/JCLI-D-11-00504.1, Tallahassee AMS, 26, pp. 1063-1083.
  24. Post, P., Truija, V., and Tuulik, J., 2002, Circulation weather types and their influence on temperature and precipitation in Estonia, ISSN: 1239-6095, Boreal Environ. Res., 7, pp. 281-289.
  25. Rahimzadeh, F. and NassajiZavareh, M., 2014, Effects of adjustment for non climatic discontinuities on determination of temperature trends and variability over Iran, doi: 10.1002/joc.3823, Int. J. Clim., 34, 6, pp. 2079-2096.
  26. Raziei, T. and Fattahi, E., 2011(1390), Assessment of application of NCEP-NCAR precipitation data in drought monitoring in Iran, J. o. Earth and Space Physics, 37, 2, pp. 225-247.
  27. Sinclair M.R., 1994, An objective cyclone climatology of the southern hemisphere, doi: 10.1175/1520-0493, Monthly Weather Review, 122, 10, pp. 2239-2256.
  28. Vicente-Serrano, S.M., Trigo, R., Lopez-Moreno, J. I., Liberato, M. L. R., Lorenzo-Lacruz, J., Begueria, S., Moran-Tejeda, E. and Ahmed El Kenawy, 2011, The 2010 extreme winter north hemisphere atmospheric variability in Iberian precipitation: anomalies, driving mechanisms and future projections, doi: 10.3354/cr00977, Clim. Res., 46, pp. 51-65.
  29. Von Storch, H. and Zwiers, F.W., 2004, Statistical analysis in Climate research, ISBN: 0-511-03753-8, Cambridge University Press, first published 1999, 496 papers.
  30. Wilks, D.S., 2011, Statistical methods in the atmospheric sciences, ISBN: 978-0-12-385022-5, Elsevier Inc., Academic Press., 100, Third edition, 704 pages.
  31. Xoplaki, E., Gonzalez-Rouco, J.F., Gyalistras, D., Luterbacher, J., Rickli, R., and Wanner, H., 2003, Interannual summer air temperature variability over Greece and its connection to the large-scale atmospheric circulation and Mediterranean SSTs 1950-1999, doi: 10.1007/s00382-002-0291-3, Climate Dynamics,20, 5, pp. 537-554.

Zarrin, A., Ghaemi, H., Azadi, M. and M. Farajzadeh, 2010, The spatial pattern of summertime subtropical anticyclones over Asia and Africa, doi: 10.1002/joc.1879, Int. J. Clim., 30, pp. 159-173.