بررسی ارتباط عوامل کنترلی بزرگ‌مقیاس جوی با رخداد گردوغبار در نیمه غربی کشور (مطالعه موردی: ماه‌های جولای 2004 و 2009)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار پژوهشکده هواشناسی و علوم جو، محل کار پژوهشکده هواشناسی

2 دانشجوی کارشناسی ارشد هواشناسی

چکیده

عوامل بزرگ‌مقیاس جوی نقش غالب و تعیین‌کننده شرایط وضع هوا و رخداد پدیده‌های هواشناختی ازجمله پدیده گردوغبار می‌باشند. ایران به دلیل شرایط گردش کلی جو در منطقه خشک و نیمه‌خشک جهان قرارگرفته بطوریکه کانون‌های گردوغبار متعددی در این عرض‌های جغرافیایی وجود دارد که  تحت برخی از عوامل بزرگ‌مقیاس جوی فعال‌شده و می توانند نواحی گسترده‌ای از غرب آسیا، ازجمله مناطق غربی کشور را تحت تأثیر قرار ‌دهند. هدف از این مطالعه تعیین ارتباط  بین عوامل کنترلی جوی با رخداد گردوغبار در نواحی غربی کشور است. برای این منظور ابتدا با استفاده از داده‌های سینوپتیک ایستگاه‌های هواشناسی، تعداد روزهای همراه با پدیده گردوغبار، طی دوره 22 ساله (2013 -1992) که دید افقی به کمتر از 5 کیلومتر رسیده تعیین گردید. سپس با استفاده از داده‌های NCEP/NCAR، الگوهای ترکیبی میانگین ماهانه و بی‌هنجاری‌ کمیت‌های بارش، فشار تراز دریا، دما و ارتفاع ژئوپتانسیل ترازهای 850 ، 700 و 500 هکتوپاسکال و شاخص نوسان اطلس شمالی بررسی شد. نتایج مقایسه این کمیت‌ها برای دوره‌های بیشینه و کمینه رخدادهای گردوغبار، نشان داد که تقویت کم‌فشار گرمایی در فلات مرکزی ایران و عراق، گرادیان شدید پربندی ترازهای پایین جو در نواحی شمالی ایران و عراق و شرق سوریه، تقویت و گسترش نصف‌النهاری پر ارتفاع تراز 500 هکتوپاسکال از نواحی مرکزی مدیترانه به روی اروپا، استقرار ناوه پربندی در شرق مدیترانه، کاهش قابل‌ملاحظه بارش فصل زمستان وکاهش غیرعادی شاخص نوسان اطلس شمالی (که منجر به انتقال مسیر حرکت توفانها به نواحی جنوبی اروپا و شمال آفریقا می شود)، از مهمترین عوامل تشدید و توسعه این پدیده در نواحی غربی کشور می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Effective large scale contorling factors on dust production over the western

نویسندگان [English]

  • Abbas Ranjbar Saadatabadi 1
  • Faezeh Noori 2
1 ASMERC, Tehran Iran
2 M. Sc. in Meteorology, Tehran, IRAN
چکیده [English]

The western area of Iran is subjected often to dust, which reduces horizontal visibility to 5 km, and sometimes even to less than 1 km. In this study, dust datasets are developed based on the visibility less than 5 km. for each 3-hour spell through 22 years (1992-2013). Dust data comprised monthly frequency for the period, in 6 stations across the west and south west of Iran. It consists of monthly dust frequency (06-code of synoptic reports) in the 22-year period from the meteorological synoptic stations. Then monthly and seasonal pressure patterns and their anomalies were studied for the months that had minimum or maximum of dust frequency during 22 years (1992-2013). Thus, in this case study the annual and interannual occurrences of dust events based on 22 years of 3-hours visibility. An analysis of large-scale circulations over the lower and middle of troposphere, for the two months (July of 2004 and 2009), was done using NCEP-NCAR reanalysis data to link their roles in and contributions to the raising frequency of dust across the western Iran. For this rezone we investigated the main factors to describe the relationship between effective Large Scale Atmospheric Circulation (LSAC) and dust frequency over western Iran, using the available meteorological data from synoptic meteorological stations and the data set includes monthly sea-level pressure, and 850, 700 and 500mb geopotential heights, wind, Temperature fields and their anomalies relative to long term mean (1981-2010). Finally the relationships of dust frequency with precipitation and North Atlantic Oscillation (NAO) have been investigated.
Surveys showed that in recent years the event frequency, intensity and the extent of the region affected by dust have been increasing. The monthly data indicate that the dust season starts at February and ends in September, with a maximum in June and July. More than 70% of the total annual dust was recorded between March and July, the 'high dust season'. The monthly and annual total dust frequencies vary considerably from year to year. In the period study, the maximum and minimum dust frequencies have been occurred in 2009 and 2004 years respectively, where the ratio of dust frequency in 2009 to 2004 was more than 31 times.
During in the years that precipitation decreases, the occurrence of dust event increases; thus, there was a meaningful relation between precipitation and the decreasing of the frequency of dust event. A highly significant negative correlation (more than -0.50) was found between dust event and precipitation in the west and south west of Iran (Table 3). Also, a negative correlation was found between dust event and the intensity of the NAO in the some stations (Table 3), which modulates the cyclonic activity over Europe and the northern Mediterranean.
Maximum numbers of dust events usually occurred in the summer. Because of strengthening the subtropical high pressure from north east Africa to Iran, the waves of Mediterranean have been delivered to northern latitudes, and there will be no possibility of moisture feeding and no precipitation. While low pressure system moves to the east, the conditions for high pressure system's deployment located in the west of upper trough, by convergence of upper flows, leads to its creation and strengthen of high pressure. So, intensive pressure gradient has created between low and high pressure systems which leads to creation of strong winds and causes dust storm over Iraq and east of Syrian. However, geographic condition might have an effective role in creating strong winds. Some potential predictors are found through detecting the atmospheric circulation factors in qualitative analyses. These are as following order:
1- In poor dust (rich dust) periods, ridge (trough) and positive (negative) geopotential height anomalies over east of Mediterranean Sea, were relatively strong compared to those in normal years, while over the west of Mediterranean Sea was standing or developing Vice versa conditions.
2- Another reason for rich dust periods in the west of Iran was developing of heat low pressure in the central of Iran and this region that is usually at the same time along with developing low pressure on north of Iraq. In poor dust periods, the situation was reversed, especially, strengthening high pressure system over the Caspian Sea and developing ridge of high pressure in the central of Iran.
3- Variation of precipitation in the region: The scavenging of summer dust particles by winter precipitation is a major process of dust removal on the region. The results showed the negative correlations between the winter precipitations and summer dust levels for the all stations. A high correlation was found between them with an R2 value of -0.71. Therefore, variation of winter precipitation in the region could affect summer dust levels.
4- A negative correlation was found between dust event and the intensity of NAO in the some stations, which modulates the cyclonic activity over Europe and the northern Mediterranean.

کلیدواژه‌ها [English]

  • Large Scale Atmospheric Circulation
  • Dust
  • West of Iran
  1.  

    1. Boloorani, A., S.O. Nabavi,‌‌ H.A. Bahrami, F. Mirzapour, M. Kavosi, E. Abasi, and A. Azizi, 2014, Investigation of dust storms entering Western Iran using remotely sensed data and synoptic analysis, Environmental Health Science & Engineering. J. 12, 124, PP.1-12.
    2. Dodangeh, E., Y. Shao, M. Daghestani, 2012, L-Moments and fuzzy cluster analysis of dust storm frequencies in Iran, Aeolian Research, Vol.5, PP.91-99.
    3. Evan, A, T.,  A.k. Heidinger, and P. Knippertz, 2006, Analysis of winter dust activity off the coast of West Africa using a new 24-year over-water advanced very high resolution radiometer satellite dust climatology, Geophysical Research. J. 111, doi: 10.1029 /2005JD00636.
    4. Ghasemi, S., 1390, Investigation of the role of North Atlantic oscillation (NAO) on the formation of the role of the circulation patterns along with dusty storms in Kermanshah province during 2000-2010, Master's thesis, Tehran University of Science Sciences.
    5. Ginoux, P., M. Prospero, O.Torres, and M. Chin, 2004, Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation, Environmental Modelling & Software, Vol.19, PP.123-138.
    6. Hurrell, J.W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003, An overview of the North Atlantic
    7. Oscillation, Geophysical Monograph 134. doi: 10.1029/134GM01.
    8. Hurrell, J.W., M.P. Hoerling, A.S. Philliphs, and T. Xu, 2004, Twentieth century North Atlantic climate change. Part I: Assessing determinism, Climate Dynamics, Vol.23, PP.371–389.
    9. Hurell, J.W., 1995, Decadal trends in the NorthAtlantic oscillation regional temperature andprecipitation: Science, Vol.269, PP.676-679.
    10. Lateef, k., A. Mishaal, and A. Abud, 2015, The  spatial distribution of dust sources in Iraq by using satellite images. International Journal of Energy and Environment, Vol.6, PP.27-36.
    11. Moulin, C., C.E. Lambert, F.Dulac, and U. Dayan, 1997, Control ofatmospheric export of dust from North Africa by the North AtlanticOscillation. Nature 387,PP. 691–694.
    12. Mahowald, N., C.Luo, and J.Corral, 2003, Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data, Journal of Geophysical Research,Vol.108, NO. D12, 4253. doi:10.1029/2002JD002821.
    13. Maarten. H., B. Ambaum., D. Stepherson, 2001, Arctic Oscillation or North Atlantic scillationJournal of Climate. Vol.14, PP.3495-3507.
    14. Mihanparast, M., A. Ranjbar, A. Meshkatee,1390, Study of the role of 850hp pressure gradient and trough in the formation of summer dust in the midwest of the country, Fourteenth Fluid Dynamics Conference, Noushirvan University of Technology in Babol.
    15. Nasr-Esfahany, M., A.Mohebalhojeh, A. Ahmadi-Givi, 1392, Numerical simulation of the North Atlantic Oscillation and its impact on the South West Asia,Journal of Physics of the Earth and Space,Vol. 39,No.3,PP.145-158.
    16. O’Liongsigh, T., G.H. McTainsh, E.K. Tews, C.L. Strong, J.F. Leys, P. Shinkfield, N.J. Tapper, 2014, The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records, Aeolian Research,Vol.12,PP. 29-40.
    17. Sisipoor,M., A. Ranjbar, A. Meshkatee, 1389, Dust Synoptic patterns in hormozgan provinc, First National Conference on Health, Environment and Sustainable Development, Islamic Azad University of Bandar Abbas.
    18. Tam, M., X. Li, L. Xin, 2014. Intensity of dust storms in China from 1980 to 2007: A new definition, Atmospheric Environment,Vol.85, PP.215-222.
    19. Varoujan, k.S., A. Nadhir, and S. Knutsson, 2013, Sand and dust storm events in Iraq, Natural Science, Vol.5, PP.1084-1094.
    20. Wanner, H., Bronnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C., Stephenson, D.B. and Xoplaki, E., 2001, North Atlantic Oscillation – Concepts and studies, Surveys in Geophysics, 22,321–382.
    21. Yu,B., D, T. andHesse, P, P., 2006, Correlation between rainfall and dust occurrence at mildura, Australia: The difference between local and source area rainfalls, Earth Surface Processes and Landforms, 17, 723-727.
    22. Zhao, Y., Huang, A.,  Zhu, X.,  Zhou, Y. and Huang,Y., 2013, The impact of the winter North AtlanticOscillation on the frequency of Springdust storms over Tarim Basin in northwest China in the past half-century ,Environmental Research, 8, 2.
    23. Zoljoodi, M., A.Didevarasl, A. and Ranjbar Saadatabadi, A., 2013, Dust Events in the Western Parts of Iran and the Relationship with Drought Expansion over the Dust-Source Areas in Iraq and Syria, Atmospheric and Climate Sciences , 3, 321-336.