حل عددی معادلات آب کم‌عمق یک‌بُعدی با روش فشرده ترکیبی مرتبه ششم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد هواشناسی، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، انتهای خیابان کارگر شمالی، مؤسسه ژئوفیزیک، گروه فیزیک فضا،

2 دکتری مهندسی مکانیک، دانشیار، مؤسسه ژئوفیزیک دانشگاه تهران

3 دکتری دینامیک شاره‌های ‌ژئوفیزیکی، استاد، مؤسسه ژئوفیزیک دانشگاه تهران

چکیده

مطالعه فیزیکی معادلات آب کم‌عمق یکی از مسائل مطرح در دینامیک شاره‌های ژئوفیزیکی است. در این کار به بررسی عملکرد روش فشرده ترکیبی مرتبه ششم برای حل عددی معادلات آب کم‌عمق یک‌بُعدی پرداخته می‌شود. برای مقایسه حل عددی با سایر روش‌های تفاضل‌متناهی، معادلات آب کم‌عمق یک‌بعدی به سه روش حل شده و نتایج حاصل برای یک آزمون موردی مقایسه می‌شود. در این حل عددی، برای انتگرال‌گیری بخش زمانی معادلات از روش رونگ-کوتا مرتبه چهار استفاده شده است. به‌علاوه برای مقایسه روش فشرده ترکیبی مرتبه ششم با سایر روش‌های تفاضل‌متناهی دو معادله مُدل ساده، یکی خطی و دیگری غیر‌خطی، که دارای حل تحلیلی می‌باشند با روش مرتبه دوم مرکزی، فشرده مرتبه چهارم و فشرده ترکیبی مرتبهششم حل شده و خطای کلی آنها با یکدیگر مقایسه می‌شود. مقایسه کمی و کیفی نتایج حاصل شده حاکی از عملکرد بهتر روش فشرده ترکیبی مرتبه ششم است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical solution of the one-dimensional shallow water equations using sixth order combined compact scheme

نویسندگان [English]

  • Esmaeil Gheysari 1
  • S. Ghader 2
  • A. AliAkbbari-Bidokhti 3
  1. Abbott, M. B. and D. R. Basco, 1989, Computational Fluid Dynamics: An introduction for engineers, John Wiley & Sons, Inc., New York, PP. 425.
  2. Chu, P. C. and C. Fan, 1998, A three-point combined compact difference scheme, Journal of coumputational Physics, No. 140, PP. 370-399.
  3. Dritschel, D. G., Polvani,Nl. M., and  Mohebalhojeh, A. R., 1999, The contour-advective semi-lagrangian algorithm for the shallow water equations, Mon. Wea. Rev., No. 127, pp. 1151-1165.
  4. Durran, D. R., 2010, Numerical Methods For Fluid Dynamics, Sprringer-verlag, New York, PP. 710.
  5. Fox, L. and E. T. Goodwin, 1949, Some new methods for the numerical integration of ordinary differential equations, Mathematical Proceedings of the Cambridge Philosophical society, No. 45, pp. 373-388.
  6. Galewsky, J., Scott, R. K., and Polvani, L. M., 2004, An initial-value problem for testing numerical models of the global shallow-water equations, Tellus, NO. 56A, pp. 429-440.
  7. Ghader, S., A. R. Mohebalhojeh and V. Esfahanian, 2009, On the spectral convergence of supercompact finite-difference schemes for the f-plane shallow-water equations, Mon. Wea. Rev, No. 137, pp. 2393-2406.
  8. Ghader, S., and Jan. Nordstorm, 2015, High-order compact finite difference scheme for the vorticity-divergence representation of the spherical shallow water equations, Int. J. Numer. Meth. Fluids, No. 78, pp. 709-738.
  9. Golshahy, H., S. Ghader and F. Ahmadi-Givi, 2011, Accuracy assessment of the super compact and combined compact schemes for spatial differencing of a two-layer oceanic model: Presentation of linear inertia-gravity and Rossby waves, Ocean Modeling, No. 37, pp. 49-63.
  10. Hirsh, R. S., 1975, Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, Journal of Coumputational Physics, No. 19, pp. 90-109.
  11. Kreiss, H. O. and J. Oliger, 1972, Comparision of accurate methods for the integration of hyperbolic equations, Tellus, No. 24, pp. 199-215.
  12. Lele, S. K., 1992, Compact finite difference scheme with spectral-like resolution, Journal of Computational physics, No. 103, pp. 16-42.
  13. Mohebalhojeh, A. R., and Dritschel, D. G., 2000, On the representation of gravity waves in numerical models of the shallow water equations, Q. J. Roy. Meteorol. Sco., No. 126, pp. 669-688.
  14. Mohebalhojeh, A. R., and Dritschel, D. G., 2007, Assessing the numerical accuracy of complex spherical shallow-water flows, Mon. Wea. Rev., NO. 135, pp. 3876-3894.
  15. Numerov, B. V., 1924, A method of extrapolation of perturbations, Monthly Notices Royal Astronomical Society, No. 84, pp. 592-610.
  16. Pinchover, Y. and J. Rubinstein, 2005, An Introduction to partial Differential Equation, Cambridge University Press, pp. 371.
  17. Sengupta, T. K, V. Lakshmanan and V. V. S. N. Vijay, 2009, A new combined stable and dispersion relation preserving compact scheme for non-periodic problems, Journal of Computational Physics, No. 228, pp. 3048-3071.
  18. Vallis, G K., and Maltrud, M. E., 1993, Generation of mean flows on a beta plane and over topography, J. Phys. Oceanogr., NO. 23, pp. 1346-1362.
  19. Vallis, G. K., 2006, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and large-scale Circulation, Cambridge University Press, pp. 745.