ارزیابی توانمندی سه روش آماری ریزمقیاس گردانی برونداد دما و بارش مدل های CMIP6 در حوضه آبریز کشف رود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، آب و هواشناسی، دانشگاه آزاد واحد نور، نور ، ایران

2 دانشیار گروه جغرافیا، دانشگاه آزاد اسلامی واحد نور، نور، ایران

3 استادیار گروه جغرافیا، دانشگاه آزاد اسلامی واحد نور، نور، ایران

4 استادیار، پژوهشکده اقلیم شناسی و تغییر اقلیم، پژوهشگاه هواشناسی و علوم جو، مشهد، ایران

چکیده

پیش‌نگری تغییر اقلیم آینده، نقشی تعیین کننده در برآوردریسک‌های آتی در بخش‌های مختلف آب، انرژی، کشاورزی و ... دارد. سناریوهایی که توسعه احتمالی جوامع بشری در آینده را توصیف و مرتبط با رفتار بشر با طبیعت می‌باشند، پاسخی به چگونگی تغییر اقلیم آینده کره زمین هستند. در این مطالعه داده‌های بارش و دمای روزانه دو ایستگاه هواشناسی مشهد و گلمکان مستقر در حوضه کشف رود برای سال‌های 1989 تا 2019 از سازمان هواشناسی کشور اخذ و کنترل کیفیت و آزمون همگنی این داده‌ها انجام شد. غربالگری مدل‌های AOGCM از مجموعه داده‌های فاز ششم MIP6 ، منتج به انتخاب سه مدل MRI-ESM2-0،ACCESS-CM2 وMIROC6 شد. ریزمقیاس‌نمایی آماری و تصحیح اریبی نیز با استفاده از سه روش: نسبت گیری خطی (LS)، نگاشت توزیع (DM) و تغییر دلتا(DC) توسط مدل CMhyd انجام شد. در پایان برای تعیین صحت سنجی برونداد هر مدل و نیز انتخاب بهترین روش ریزمقیاس نمایی برای دو مقیاس زمانی ماهانه و روزانه، از آماره‌های اریبی، RMSE و نیز ضرایب همبستگی پیرسون، اسپیرمن و کندال و نیز نمودار تیلور استفاده شد. بر مبنای معیارهای آماری بکار رفته، روشLS برای داده‌های بارش و DM برای دما از دقت بالاتری برخوردار هستند. در شبیه‌سازی دما برای دو ایستگاه مورد بررسی، به ترتیب مدل MRI و ACCESS و MIROC از توانمندی بالاتری برخوردار بودند. همچنین نتایج نشان داد هر سه مدل توانایی بسیار بالایی در شبیه‌سازی داده‌های دمای کمینه و بیشینه روزانه و ماهانه در ایستگاه های فوق دارند. به دلیل تغییرات مکانی و زمانی بسیار زیاد بارش در مناطق خشک و نیمه خشک، مدل‌ها توانایی بالایی در شبیه‌سازی-های این متغیر ندارند. با این وجود، مدل MRI نسبت به دو مدل دیگر با حدود 70 درصد مقدار ضریب همبستگی به روش اسپیرمن، از توانایی بالاتری برخوردار بود. از بین مدل‌های مورد بررسی، مدل MIROC در شبیه‌سازی بارش، کارایی کمتری نسبت به سایر مدل‌ها داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the ability of three statistical methods to downscale the output of temperature and precipitation of CMIP6 models in the Kashfrud basin

نویسندگان [English]

  • Mahbobe Rashidi Ghane 1
  • Sadroddin Motevalli 2
  • Gholam Reza janbaz Ghobadi 3
  • Mansoureh Kouhi 4
1 PhD. Student, Islamic Azad University , Nour Branch
2 Associate Professor, Department of Geography, Islamic Azad University, Noor branch
3 Islamic Azad University
4 Member of Disasters and Climate Change Research Group- CRI (RIMAS)
چکیده [English]

1. Introduction



The Intergovernmental Panel on Climate Change (IPCC) has observed that climate variable changes associated with global warming are affecting different sector of human society. Changes in precipitation and temperature are anticipated as direct driving factors because they are the main factors that impact regional hydrological processes.

The general circulation models (GCMs) are the most important tool for predicting the future climate change, which can reproduce important processes about global and continental scale atmosphere and project future climate under the different scenarios.

The use of climate model simulations is now widespread, but there's still a risk in using these data, given the existing biases as well as the inability of these models to represent regional topography and land-sea contrast properly due to the coarse resolution of GCMs which makes local climate projection a huge challenge. Teutschbein and Seibert (2012) state that simulations of temperature and precipitation using GCMs often show significant biases due to systematic model errors or discretization and spatial averaging within grid cells, which hampers the use of simulated climate data as direct input data for climate change studies. Bias correction procedures are used to minimize the discrepancy between observed and simulated climate variables on a daily time step so that the corrected simulated climate data match simulations using observed climate data reasonably well. Many bias correction methods, ranging from simple scaling techniques to the rather more sophisticated distribution mapping techniques, have been developed to correct biased GCM outputs.

This study aims to select the best model and bias correction method based on different statistical metrics to downscale the daily precipitation and Maximum and Minimum temperature (Tax and Thin) outputs of selected CMIP6 models for Mashhad and Goldmkan synoptic stations, which are located in the Kashaf Rroud basin.



1. Materials and Methods

For this study, daily observations of precipitation, minimum temperature and maximum temperature during 1989-2019 of two synoptic stations in the Kashaf Roud basin were used. Over the last few years, the Copernicus database has been of great help to researchers in the field of climate change studies for the preparation and aggregation of climate data, observational data, satellite data, etc. This database has enabled researchers to pre-select models as well as specify the desired time and place. The historical CMIP6 data have been download from the Copernicus Climate Data Store (CDS).

First, the precipitation and temperature time series were qualified. RHtests-dlyPrcp and RHtestsV4 packages in the R software environment were then used to test the homogeneity of the precipitation and temperature daily time series.

CMhyd (Climate Model data for hydrologic modeling) is a software that has been used to extract and bias-correct data obtained from the selected global climate models using three statistical methods e.g., linear scaling (LS), distribution mapping (DM) and delta change (DC). The bias, RMSE, Pearson, Spearman and Kendall correlation coefficients and the Taylor diagram were used to determine the accuracy of the results of each model and to select the best method to downscale the daily and monthly outputs of GCMs. There are two sets of data in the CMIP6 simulations:



2-1. Historical data

Historical data of CMIP6 covers the period of 1850-2014, which can be used as a reference period to compare and verify the performance of each GCM.

2-2. Scenarios data

SSP scenarios provide different pathways for future climate forcing. They typically cover the period 2100-2006.

2. Results and Discussion

In this study, daily precipitation and temperature time series from two synoptic stations, Mashhad and Golmakan, located in the Kashaf Roud basin, were first used as primary quality control. Then the homogeneity of these data was tested. Maximum and minimum temperatures and precipitation in Golmakan were homogeneous. Mashhad was homogeneous for precipitation and minimum temperature time series, but for maximum temperature it had a change point on 09/30/1994, which was homogenized in the series and then used. The large-scale data of precipitation and temperature of three models have been scaled down to the level of the stations using three statistical methods and have been corrected for bias. Root-mean-square error (RMSE), correlation coefficients (Pearson, Spearman and Kendall) and bias (RB) were calculated to determine the accuracy and performance of each model and each exponential downscale method. In a further step, the daily time series of these data were converted to monthly data, then all validation process were done for monthly data in order to make a better and more comprehensive decision based on these results.

Among downscale results of rainfall and temperature using LS, DM and DC methods; in all models and at both stations for daily and monthly rain; LS method showed better results. However, the DM method gives better results for the maximum and minimum temperature data (except for the minimum temperature in the ACCESS-CM2 model, where the LS method is slightly better for both Mashhad and Golmakan). With a difference of 1.6 mm in the DM method, the largest bias in the monthly precipitation data for Mashhad is observed in the MIROC6 model.

2. Conclusion

The results of this research show that LS for precipitation and DM for temperature will have higher accuracy in the Kashaf Roud basin. MRI model performed better for precipitation and maximum temperature using LS method, however ACCESS performed better for minimum temperature in these stations. Exponential down scaling using the DM method gives better results for precipitation in Mashhad for the MRI model and in Goldmkan for the ACCESS model. MRI gives better results at Mashhad and MIRO at Goldmkan. The DM method also simulates more accurate results at both stations of the MRI model for the minimum temperature. Therefore, the MRI model is ranked first and ACCESS and MIRO are ranked second and third, respectively, if we want to select a comprehensive model among these three models that has the best simulations of precipitation and temperature.

کلیدواژه‌ها [English]

  • Bias correction
  • Statistical downscaling
  • CMIP6
  1. Alexander, L., Allen, S., & Bindoff, N. L. (2013). Working group I contribution to the IPCC fifth assessment report climate change 2013: The physical science basis summary for policymakers.
  2. Asfaw, A., Simane, B., Hassen, A & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia:A case study in Woleka sub-basin. Weather and Climate Extremes, 19:29-41.
  3. Ataei, H., Kouhi, M., Modirian, R., & Bazrafshan, B. (2021). Projected Changes in Temperature and Precipitation over Kashafrood Basin Based on Statistical and Dynamical Downscaling Methods. Journal of Natural Environmental Hazards, 10(30), 183-202. doi: 10.22111/jneh.2021.37827.1777.
  4. Ataei, H., Kouhi, M., Modirian,R.,Bazrafshan, B. (2022). Projected Changes in Temperature and Precipitation over Kashafrood Basin Based on Statistical and Dynamical Downscaling Methods, Journal of Natural Environmental Hazards, 10(30), Pp. 183-202.
  5. Babaeian, I., Modiriyan, R., Khazanedari,L., Karimian, M., Kouzehgaran,S., Kouhi, Falamarzi,F., Malbusi,S., 1402, Projection of Iran’s precipitation in 21st Century using downscaling of based on selected CMIP6 Models, Case Study: Statistical downscaling by CMHyd, Journal of Earth and Space Physics.
  6. Babaousmail, H., Ayugi, B., Rajasekar, A., Zhu, H., Oduro, C., Mumo, R., & Ongoma, V. (2022). Projection of extreme temperature events over the Mediterranean and Sahara using bias-corrected CMIP6 Atmosphere, 13(5), 741.
  7. Carter, T. R., M. Hulme and M. Lal. (2007). General guidelines on the use of scenario data for climate impact and adaptation assessment IPCC Report, Chapter 3, 15-37.
  8. Chen, J., Brissette, F. P., Chaumont, D., & Braun, M. (2013). Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resources Research, 49(7), 4187-4205.
  9. Christensen, J. H., Boberg, F., Christensen, O. B., & Lucas‐Picher, P. (2008). On the need for bias correction of regional climate change projections of temperature and precipitation. Geophysical research letters, 35(20).
  10. Copernicus Climate Change Service, Climate Data Store. (2021). CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.c866074c.
  11. De Niel, J., Van Uytven, E., & Willems, P. (2019). Uncertainty analysis of climate change impact on river flow extremes based on a large multi-model ensemble. Water Resources Management, 33(12), 4319-4333.
  12. Dosio, A., & Paruolo, P. (2011). Bias correction of the ENSEMBLES high‐resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research: Atmospheres, 116(D16).
  13. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958.
  14. Gholipour, J., Mousavi bayegi, M., Babaeian, I., & Jabbari Nooghabi, M. (2021). Investigating the Trend of extreme Precipitation Events South Khorasan province Due to Climate Change. Journal of Climate Research, 1400(46), 29-42.
  15. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys. Res-Atmos 104:6335-6352. https://doi.org/10.1029/98jd02072.
  16. Giorgi, F., & GAO, X. J. (2018). Regional earth system modeling: review and future directions. Atmospheric and Oceanic Science Letters, 11(2), 189-197.
  17. Giorgi, F., & Mearns, L. O. (1999). Introduction to special section: Regional climate modeling revisited. Journal of Geophysical Research: Atmospheres, 104(D6), 6335-6352.
  18. Gooré Bi, E., Gachon, P., Vrac, M., & Monette, F. (2017). Which downscaled rainfall data for climate change impact studies in urban areas? Review of current approaches and trends. Theoretical and Applied Climatology, 127, 685-699.
  19. Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Downscaling RCM precipitation to the station scale using statistical transformations–a comparison of methods. Hydrology and Earth System Sciences, 16(9), 3383-3390.
  20. Gunavathi, S., & Selvakumar, R. (2021). Assessment of Various Bias Correction Methods on Precipitation of Regional Climate Model and Future Projection. Research square, https://doi.org/10.21203/rs.3.rs-339080/v1.
  21. Hall, A. (2014) Projecting regional change. Science, 346(6212), 1461-1462
  22. Hanel, M., & Buishand, T. A. (2011). Analysis of precipitation extremes in an ensemble of transient regional climate model simulations for the Rhine basin. Climate Dynamics, 36, 1135-1153.
  23. (2013). Climate change 2013: The physical science basis, in Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change: Cambridge University Press, Cambridge.
  24. Kendall, M. G. (1948). Rank correlation methods.
  25. Kouhi, M., Mousavi Baygi, M., Farid hosseini, A. R., Sanaei Nejad, H., Jabbari Nooghabi, H. (2013). Statistical Downscaling of Extremes of precipitation and construction of their future scenarios in the Kashfroud Basin, Journal of Climatorological Research, 3(12): 35-53.
  26. Lane, M. E. Kirshen, P. H. and Vogel, R. M. (1999). Indicators of impact of global climate change on U.S. water resources. ASCE, J. Water Resour. Planning and Manag. 125: 194-204. DOI: 10.1.1.711.8987.
  27. Modaresi, F., Araghinejad, S., Ebrahimi, K., & Kholghi, M. K. (2010). Regional Assessment of Climate Change Using Statistical Tests:Case Study of Gorganroud-Gharehsou Basin. Journal of Water and Soil, 24(3). https://doi.org/10.22067/jsw.v0i0.63113
  28. Monhart, S., Spirig, C., Bhend, J., Bogner, K., Schär, C., & Liniger, M. A. (2018). Skill of subseasonal forecasts in Europe: Effect of bias correction and downscaling using surface observations. Journal of Geophysical Research: Atmospheres, 123(15), 7999-8016.
  29. Nasrin Salehnia, N., Alizadeh,A., Sanaei Nejad, H., Bannayan, M., Zarrin, A. (2019). Investigating the Output of Numerical Prediction Models under RCP4.5 Scenario for Forecasting Meteorological Droughts,Iranian Journal of Irrigation and drainge, 12(6), 72, March and April 2019, 1315-1326.
  30. Piani, C., Haerter, J. O., & Coppola, E. (2010). Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and applied climatology,99,187-192.
  31. Poméon, T., Jackisch, D., & Diekkrüger, B. (2017). Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. Journal of hydrology, 547, 222-235.
  32. Pontoppidan, M., Kolstad, E. W., Sobolowski, S., & King, M. P. (2018). Improving the reliability and added value of dynamical downscaling via correction of large‐scale errors: a Norwegian perspective. Journal of Geophysical Research: Atmospheres, 123(21), 11-875.
  33. Prusty, R. M., Das, A., & Patra, K. C. (2018). Climate change impact assessment under CORDEX South-Asia RCM scenarios on water resources of the Brahmani and Baitarini River Basin, India.
  34. Rathjens, H., Bieger, K., Srinivasan, R., Chaubey, I., & Arnold, J. (2016). Documentation for preparing simulated climate change data for hydrologic impact studies. URL: http://swat. tamu. edu/software/cmhyd.
  35. Rauscher, S. A., Coppola, E., Piani, C., & Giorgi, F. (2010). Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Climate dynamics, 35, 685-711.
  36. Rong, X., LI, J., Chen, H., Su, J., Hua, L., Zhang, Zh., and Xin, Y. (2020). The CMIP6 Historical Simulation Datasets Produced by the Climate System Model CAMS-CSM. ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 38, 285-295, 2010.
  37. Sayari, N., Alizadeh ,A., Bannayan,M., Farid Hosseini, , Hessami Kermani, M. R.(2011), Drought Monitoring under Climate Change Conditions in Kashafrood Basin (Mashad Station) in Future Periods Using HadCM3 Model under A2 and B2 Emission Scenarios, Journal of Climate Research, Vol. 2, No. 7&8, Autumn & Winter 2011.
  38. Sunyer, M. A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., . & Yücel, I. (2015). Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrology and Earth System Sciences, 19(4), 1827-1847.
  39. Tabatabayi, S.A & Hosseyni, M. (2003). Investigation of climate change in Semnan city based on monthly precipitation and average monthly temperature parameters. Third Regional Conference on Climate Change, Meteorological Organization of Iran, University of Isfahan, COI: RCCC03_011.
  40. Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of geophysical research: atmospheres, 106(D7), 7183-7192.
  41. Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of hydrology, 456, 12-29.
  42. Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of hydrology, 456, 12-29.
  43. Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29.
  44. Veijalainen, N., Lotsari, E., Alho, P., Vehviläinen, B., & Käyhkö, J. (2010). National scale assessment of climate change impacts on flooding in Finland. Journal of hydrology, 391(3-4), 333-350.
  45. Zarrin, A., & Dadashi-Roudbari, A. (2022). Projection of precipitation intensity in Iran using NEX-GDDP by multi-model ensemble approach. Iranian Journal of Geophysics, 16(1), 47-68. doi: 10.30499/ijg.2021.300366.1353.
  46. Zarrin, A., Dadashi-Roudbari, A., & Hassani, S. (2022). Future changes in precipitation extremes over Iran: Insight from a CMIP6 bias-corrected multi-model ensemble. Pure and Applied Geophysics, 179, 441-464.
  47. Cao, L.; Zhao, P.; Yan, Z.; Jones, P.; Zhu, Y.; Yu, Y.; Tang, G. Instrumental temperature series in eastern and central China back to the nineteenth century. J. Geophys. Res. Atmos. 2013, 118, 8197–8207.
  48. Wang, X.L. Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maxi-mal t or F test. J. Appl. Meteorol. Climatol. 2008, 47, 2423–2444.
  49. Wang, X. L.; Chen, H.; Wu, Y.; Feng, Y.; Pu, Q. New Techniques for the Detection and Adjustment of Shifts in Daily Precipitation Data Series. J. Appl. Meteorol. Clim. 2010, 49, 2416–2436.
  50. Wang, X. ; Feng, Y. RHtests_dlyPrcp User Manual. 2014. Available online: http://etccdi.pacificclimate.org/software.shtml (accessed on 15 April 2022).