ویژگی‌های همگرایی شار رطوبتی در زمان وقوع خشکسالی‌ها و ترسالی‌های فراگیر ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان

2 استادیار، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان

3 دانش آموخته کارشناسی ارشد، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان

چکیده

در این تحقیق سعی بر آن است که ویژگی‌های همگرایی شار رطوبتی در زمان وقوع خشکسالی‌ها و ترسالی‌های فراگیر ایران مورد بررسی قرار گیرد. لذا در راستای رسیدن به این هدف خشکسالی‌ها یا ترسالی‌هایی که حدود 75 درصد و بیشتر ایستگاه‌های مورد مطالعه در ایران را درگیر خود نموده باشند به عنوان خشکسالی‌ها یا ترسالی‌های فراگیر تعریف شدند. نتایج تحلیل نیمرخ‌های همگرایی شار رطوبتی در زمان وقوع خشکسالی ها و ترسالی های فراگیر نشان دادند که در زمان وقوع ترسالی های فراگیر انتقال رطوبت به داخل ایران از سطوح پایین‌تر و با ضخامت بیشتر و در زمان وقوع خشکسالی های فراگیر این انتقال از سطوح بالاتر و با ضخامت کمتری انجام می‌شود. آرایش فضایی همگرایی شار رطوبتی در بعد افقی نیز نشان دادند که در تراز 850 هکتوپاسکالِ ترسالی های فراگیر، یک نوار نسبتاً ممتد از همگرایی شار رطوبتی با جهت غربی-شرقی بر روی دریای مدیترانه در حد فاصل دو عرض جغرافیایی 40-35 درجه به سمت شمال غرب ایران کشیده شده است. از جانب جنوب نیز یک نوار نسبتاً گسترده و قوی از همگرایی شار رطوبتی با منبع تأمین رطوبت دریای عرب با جهت جنوبی-شمالی به سمت نیمه غربی ایران امتداد پیدا کرده است. این دو نوار از همگرایی شار رطوبتی در شمال غرب ایران به هم متصل می‌شوند. اما در خشکسالی های فراگیر نوار ممتد غربی-شرقی همگرای شار رطوبتی که در ترسالی‌های فراگیر بر روی دریای مدیترانه بود در خشکسالی‌های فراگیر به عرض‌های جغرافیایی بالاتر، حد فاصل بین 40 تا 50 درجه عرض جغرافیایی، نقل مکان می‌کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Characteristics of Moisture Flux Convergence in Pervasive Wet and Dry Periods in Iran

نویسندگان [English]

  • Peyman Mahmoudi 1
  • Mohsen Hamidianpour 2
  • Mahdi Sanaei 3
1 Department of Physical Geography, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan
2 Department of Physical Geography, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Iran.
3 Department of Physical Geography, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Iran.
چکیده [English]

The occurrence of precipitation in an area requires several conditions within the Earth's atmosphere. Moisture availability, deep instability, and cooling availability are the three basic conditions for precipitation to occur. Precipitation, no matter what happens, requires a source to supply the moisture pluvial systems. This moisture can be supplied from the site itself or nearby or more remote areas. The processes and factors involved in the phenomenon of precipitation have long been considered by researchers and have been studied and researched from various aspects. Due to the location of Iran in the transition from a tropical climate to mid-latitude climate and severe spatial and temporal variability of precipitation, issues related to precipitation and water resources have long been one of the most important issues in this land. There are no significant sources of moisture inside Iran. Inland lakes or rivers are not large enough to provide moisture precipitation to adjacent areas. They are mostly local and change the Absolute and Relative humidity of the air. As a result, Iran's moisture precipitations are supplied from nearby water sources such as the Caspian Sea and southern waters or more distant sources such as the Mediterranean Sea, the Indian Ocean, etc. According to the rich research literature on the dynamic, physical and synoptic properties of moisture flux convergence on local, regional and global scales, there are still some questions, especially about the spatial and temporal characteristic of moisture transfer in the form of moisture flux convergence functions during pervasive wet and dry periods in the Middle East, especially in Iran and this study is trying to answer some of them. Therefore, the most important questions in this study that are to be answered are as follows:

• What are the vertical variations of moisture flux convergence in the vertical dimension during pervasive wet and dry periods?

• What are the vertical variations of moisture flux convergence in the horizontal dimension during pervasive wet and dry periods?



This research investigates the characteristics of moisture flux convergence at the time of occurrence of pervasive wet and dry periods in Iran. To achieve this goal, two different databases were used. The first database was monthly precipitation data of 63 synoptic stations in Iran for a period of 30 years (1986-2016), which was obtained from the Iran Meteorological Organization. The second database included gridded data of atmospheric variables such as the geopotential height, sea level pressure, zonal component of wind, meridional component of wind, temperature, and specific humidity which were obtained from the website of the European Center for Medium-Range Weather Forecasting (ECMWF) as monthly observations. The Standardized Precipitation Index (SPI) was used to analyze Iran's droughts on three-time scales: monthly, seasonal and annual. Then, based on a spatial index, wet and dry periods, which affected about 75% or more of the stations studied, were defined as pervasive wet and dry periods. Finally, with the identification of pervasive wet and dry periods at different time scales, moisture flux convergence variations during pervasive wet and dry periods were determined in both vertical and horizontal dimensions. The results of analysis of moisture flux convergence profiles on the studied time scales showed that the height and thickness of the moisture transmission layers inside Iran play a very important role in the occurrence of pervasive wet and dry periods. So that in pervasive wet periods, moisture is transported into Iran from lower levels and with greater thickness, and in pervasive dry periods, this transition takes place from higher levels and with less thickness. The spatial arrangement of moisture flux convergence in the horizontal dimension at different levels also showed that the 850 hPa level can reveal the cause of pervasive wet and dry periods more than other levels studied. At the 850 hPa level, pervasive wet periods are observed as a relatively continuous strip of moisture flux convergence with a west-east direction from the Mediterranean Sea between two latitudes of 35-40 degrees to the northwest of Iran. At the 850 hPa level of pervasive wet periods, we observe a relatively continuous strip of moisture flux convergence with a west-east direction is extended from on the Mediterranean Sea between two latitudes of 35-35 degrees to the northwest of Iran. From the south, a relatively wide and strong strip of moisture flux convergence with the source of moisture the Arabian Sea extends in a south-north direction to the western half of Iran. These two strips of moisture flux convergence are connected in northwestern Iran. But in pervasive dry periods, we see almost different spatial patterns than moisture flux convergence at the 850 hPa level on the study area. The continuous west-east strip of moisture flux convergence, which was from the Mediterranean Sea during the pervasive wet periods, moves to higher latitudes in dry pervasive Octobers, between 40 and 50 degrees latitude. The same displacements range from 40-35 to 50-40 degrees, diverting the entry of precipitation systems of the Mediterranean Sea into Iran.

کلیدواژه‌ها [English]

  • synoptic
  • drought
  • moisture flux convergence
  • sub-tropical high pressure
  • Arabian Sea
  1. Alestalo, M., 1983, The atmospheric water budget over Europe. In: Street-Perrott, A., Beran, M., Ratcliffe, R. (eds.)Variations in the Global Water Budget. Hingham, Mass.: D. Reidel, pp. 67–79.
  2. Alizadeh, A., 2012, Principles of applied hydrology. Emam Reza University press, Mashhad, Iran.
  3. Alpert, P., Y. Shay-EI, 1993, The paradox of the winter net moisture sink over the Arabian-Iraqi desert. Annales Geophysicae, No2-3, pp. 190-194.
  4. Behboudian, J., 2002, Nonparametric method. Payame Noor University press, Tehran, Iran.
  5. Calanca, P., A. Ohmura, 1994, Atmospheric moisture flux convergence and accumulation on the Greenland Ice Sheet. IAHS Publication, 223, pp. 76-83.
  6. Darand, M., F. Pazhoh, 2019, Vertically integrated moisture flux convergence over Iran. Climate Dynamics, 53, pp. 3561–3582.
  7. Darand, M., P. Pazhoh, 2019, Synoptic analysis of sea level pressure patterns and Vertically Integrated Moisture Flux Convergence VIMFC during the occurrence of durable and pervasive rainfall in Iran. Dynamics of Atmospheres and Oceans. 86, pp. 10-17.
  8. Farajzadeh Asl, M., M. Karimi Ahmadabad, H. Ghaemi, M. R. Mobasheri, 2009, Mechanism of Water Vapor Transport in Winter Rainfall Over the West of Iran (A Case Study: 1-7 January 1996). J Spatial Plan 13(1): 193-217.
  9. Gao, Y., L. R. Leung, E. P. Salathé Jr, F. Dominguez, B. Nijssen, D. P. Lettenmaier, 2012, Moisture flux convergence in regional and global climate models: Implications for droughts in the southwestern United States under climate change. Geophys. Res. Lett., 39, L09711, doi: 10.1029/ 2012GL051560.
  10. Gao, Y., L. Leung, Y. Zhang, L. Cuo, 2015, Changes in Moisture Flux over the Tibetan Plateau during 1979-2011: Insights from a High Resolution Simulation. J. Climate. Vol 28, 4185-4197, doi:10.1175/JCLI-D-14-00581.1, in press.
  11. Ghaedi, S., S. Movahedi, S. A. Masoodian, 2012, The Relation between the Red Sea Trough and Heavy Precipitation in Iran. J Geogr Sustain Environ 2(1): 1-18.
  12. Ghaffari, D., H. Nouri, 2016, Relative Humidity and Moisture Flux Convergence during the Dusty Days in Alvand Mountain. Journal of Ecopersia. Vol. 4(4): 1527-1540.
  13. Ghavidel Rahimi, Y., 2011, Drawing and analysis of atmospheric Moisture Flux Convergence (MFC) during the heavy rainfall caused by Phet tropical super cyclone in Chabahar coastal region. J Spatial Plan 15(2): 101-118.
  14. Hejazizadeh, Z., 1993, Synoptic study of subtropical high pressure fluctuations. Dissertation, Tarbiat Modarres University, Tehran, Iran.
  15. Karimi Ahmad Abad, M., 2007, Analysis of the moisture supplying sources for Iran’s precipitation. Dissertation, Tarbiat Modarres University, Tehran, Iran.
  16. Karimi, M., M. Farajzadeh, 2012, Moisture flux and spatial -temporal patterns of moisture supply resources in precipitation of Iran. J Appl Res Geogr Sci 11(22): 109-127.
  17. Karimi, M., F. Noruzi, M. Jafari, F. Khoshakhlagh, A. Shamsipour, 2022, Arabian anticyclone’s spatial variations at 850 hPa simultaneously with precipitation of October to March in Iran. Physical Geography Research Quarterly, 53(4), 509-529.
  18. Lashkari, H., A. Matkan, M. Azadi, Z. Mohammadi, 2017, Synoptic analysis of Arabian subtropical high pressure and subtropical jet Stream in shortest period of precipitation in South and South West of Iran. Environmental Sciences, 14(4), 59-74).
  19. Liu, J., C. Han‐Ru, E. S. Ronald, 2002, Characteristics of the water vapour transport over the Mackenzie river basin during the 1994/95 water year. Atmosphere-Ocean, 40:2, 101-111, DOI: 10.3137/ao.400202.
  20. Mahmoudi, P., T. Tavousi, S. Kordi Tamandani, 2022, Identifying patterns of Synoptic Anomalies Resulting in Pervasive Droughts and Wet periods in Iran. Physical Geography Research Quarterly, doi: 10.22059/jphgr.2022.267431.1007286.
  21. Mahmoudi, P., M. Khosravi, S. A. Masoodian, B. Alijani, 2012, Synoptic Anomalies Resulting in Pervasive Frosts in Iran. Journal of Geography and Environmental Hazards, 1(1), 1-17.
  22. Malik, K. M., P. A. Taylor, 2011, Characteristics of Moisture Flux Convergence over the Mackenzie River Basin for Water Years 1991–2008. Atmosphere-Ocean, 49:3, 279-288, DOI: 10.1080/07055900.2011.609528.
  23. Malik, K. M., P. A. Taylor, K. Szeto, 2015, Characteristics of moisture flux convergence in Central Southwest Asia. Theor Appl Climatol, Springer-Verlag, DOI: 10.1007/s00704-014-1192-1.
  24. Masoodian, S. A., 1998, Investigation of the system of temporal-spatial variations of precipitation in Iran. Dissertation, University of Isfahan, Isfahan, Iran.
  25. Masoodian, S. A., B. Mahammadi, 2010, The analysis of frontogenesis frequency effected on super heavy rainfall in Iran. 4th International Congress of the Islamic World Geographers (ICIWG), 14-16 April, Zahedan, Iran.
  26. Mckee, T. B., N. J. Doesken, J. Kleist, 1993, The relationship of drought frequency and duration to time scales. 8 Confj, Applied climatology.
  27. Mckee, T. B., N. J. Doesken, J. Kleist, 1995, Drought Monitoring with Multiple time scales. 9 Conf. Applied climatology, 15 - 20 Jan, Dallas 233 - 236 pp.
  28. Mohammadi, Z., H. Lashkari, 2018, Effects of Spatial Movement of Arabia Subtropical High Pressure and Subtropical Jet on Synoptic and Thermodynamic Patterns of Intense Wet Years in the South and South West Iran. Physical Geography Research Quarterly, 50(105), 491-509.
  29. Peixoto, J. P., 1973, Atmospheric vapor flux computations for hydrological purpose. WMO, No. 357.
  30. Pourasghar, F., H. Ghaemi, S. Jahanbakhsh, B. Sari Sarraf, 2013, Studying of moisture flux during wet and dry periods over southern part of Iran from adjacent Seas. J Clim Res 4(15): 2-16.
  31. Ramakrishna, S. S. V. S., V. B. Rao, B. R. S. Rao, D. H. Prasad, N. N. Rao, R. Panda, 2016, A study of 2014 record drought in India with CFSv2 model: role of water vapor transport. Clim Dyn, DOI 10.1007/s00382-016-3343-9.
  32. Sahin, S., M. Turkes, S. H. Wang, D. Hannah, E. Warren, 2015, Large scale moisture flux of Med Basin and relationships with drier and wetter conditions. Clim Dyn, Springer-Verlag Berlin Heidelberg 2015, DOI 10.1007 / s00382-015-2545-x.
  33. Tan, E., 2015, Variability in Moisture Flux Convergence Rates on Turkey. 5th International Conference on Meteorology and Climatology of the Mediterranean.
  34. Wei, J., H. Su, Z. L. Yang, 2015, Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe. Clim Dyn, DOI 10.1007/s00382-015-2593-2.
  35. Zangeneh, S., H. Lashkari, M. Moradi, 2015, Synoptic analysis of Saudi pressure and effect on drought the South and South West of Iran. Geography and Sustainability of Environment, 5(15), 17-31.
  36. https://www.ecmwf.int/