آشکار سازی تغییر اقلیم با تحلیل روند وقوع رخدادهای فرین اقلیمی در غرب و جنوب غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران

2 دانشجوی دکتری، دانشگاه علوم تحقیقات، تهران

3 دانشیار، دانشگاه آزاد اسلامی، واحد شمال تهران

4 استاد، دانشگاه خوارزمی، تهران

چکیده

تغییرات اقلیمی و گرم شدن آب و هوا می تواند بطور مستقیم بر مقادیر فرین اقلیمی و تغییرات زمانی و مکانی این رخدادها تاثیر گذارد. هدف این پژوهش تحلیل روند وقوع رخدادهای فرین اقلیمی در غرب و جنوب غرب ایران است. داده‌های مورد استفاده شامل؛ داده‌های بارش، حداکثر و حداقل دمای روزانه 28 ایستگاه سینوپتیک واقع در غرب و جنوب غرب کشور طی دوره آماری مشترک 30 ساله (1988-2017) می‌باشد. محاسبه شاخص‌های حدی با استفاده از قابلیت‌های برنامه نویسی در محیط نرم‌افزار متلب انجام و روند تغییرات هر یک از شاخص‌ها با استفاده از آزمون من کندال بررسی و نقشه‌ها و نمودارهای لازم تهیه شدند. نتایج بررسی چگونگی تغییرات زمانی رخداد شاخص‌های گرم طی دوره 2017-1988 در سطح منطقه نشان داد که برای بیشتر ایستگاه‌ها در حالت کلی، روند شاخص‌های گرم مانند شب‌های گرم، روزهای گرم ، تعداد روزهای تابستانی و تعداد شب‌های حاره‌ای، صعودی بوده است. در مقابل تغییرات زمانی رخداد شاخص‌های سرد نشان داد که برای بیشتر ایستگاه‌ها در حالت کلی روند شاخص‌های سرد مانند روزهای سرد، شب‌های سرد و تعداد روزهای همراه با یخبندان، نزولی بوده است. بنابراین نکته مهمی که از بررسی کلی مجموع شاخص های حدی گرم و سرد در منطقه پژوهش برداشت می شود، حاکمیت روند گرمایشی در دوره آماری مورد نظر است. نتایج به‌دست‌آمده از بررسی فراوانی رخداد و روند شاخص‌های حدی بارش در سطح منطقه، مؤید آنست که همانند بسیاری از نواحی کشور، مجموع بارش منطقه با کاهش مواجه شده است. در مقابل بارش‌های حداکثری در عین اینکه مقادیر حدی قابل ‌توجهی را نشان میدهند، طی دوره 2017-1988 دارای روند نزولی بوده اند. نکته قابل تامل دیگر اینکه روند نزولی شاخص روزهای تر و روند صعودی شاخص روزهای خشک متوالی در سطح منطقه پژوهش، می تواند حاکی از حرکت منطقه بطرف بری شدن و تشدید شرایط کم آبی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Detection of climate change by analyzing the occurrence of Extreme-climatic events in the west and southwest of Iran

نویسندگان [English]

  • mehran Zand 1
  • sara Gholamrezaei 2
  • Seyyed Jamaluddin Daryabari 3
  • Bahlul Alijani 4
1 - Associate Professor ,Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2 Doctoral student of Climatology, Tehran University of Research Sciences, Iran
3 Associate Prof., North Tehran Islamic Azad University, Department of Climatology, Tehran, Iran
4 Professor, Faculty of Khwarazmi University, Department of Climatology, Tehran, Iran
چکیده [English]

Introduction

Climate change and global warming may have direct effects on climate extreme values and temporal as well as spatial variations of these events. Alterations in natural and human communities caused by meteorological extreme events are more significant than those caused by climatic averages. These extreme events widely draw public attention, and are particularly foregrounded by governments and academic communities (An et al. 2019). Given the noticeable consequences of climate extremes, the Intergovernmental Panel on Climate Change (IPCC) organized a team of experts to investigate the challenges caused by extreme events and measure extreme indices (Houghton et al. 2001, Peterson et al. 2002). This team suggested 27 indices to investigate and measure climate extremes. These indices have globally drawn the attention of atmospheric sciences researchers, and many studies have been conducted based on these indices to investigate both past and future events. The literature review indicated that spatial and temporal variations of extreme climate events related to both the past and future have been sufficiently investigated by certain researchers abroad. However, extreme climate events in Iran have been rarely examined. The few studies to investigate the events related to temperature and precipitation extremes in the selected region using temperature and precipitation data and synoptic stations located in Western and Southwestern Iran.



Materials and Methods

The regions that have been investigated in the present study are Ilam, Lorestan, Khuzestan, Chaharmahal and Bakhtiari, Kohgiluyeh and Boyer-Ahmad, Bushehr, and Fars provinces in Western and Southwestern Iran. These provinces cover 28/9924 square kilometers comprising 17/6% of the whole country area. The data used in this study include average precipitation, and maximum as well as minimum daily temperatures at 28 synoptic stations located in Western and Southwestern Iran in a common statistical period of 30 years from 1988 to 2017. After selecting the stations, the Run Test was used for all the stations and precipitation parameters, and minimum were measured. Subsequently, a matrix of the daily precipitation data and minimum. as well as maximum daily temperatures for was prepared. Finally, extreme indices (26 precipitation and temperature indices as suggested by the expert group CCL/CLIVAR) were measured using programming in the context of the MMATLAB software environment, and the variation process in every index was examined using the Mann-Kendall test. Then, the required maps and diagrams were prepared.



Results and Discussion

The investigation of temporal variations in the occurrence of warm indices from 1988 to 2017 in Western and Southwestern Iran using the Mann-Kendall test (with a reliability level of 95%) indicated that the total trend of warm indices such as warm nights, warm days, the number of summer days, and the number of tropical nights for most of the stations has been increasing. However, the examination of temporal variations in the occurrence of cold indices using the Mann-Kendall test (with the reliability level of 95%) showed that the total trend of cold indices such as cold days, cold nights, and the number of frost days was declining.

The significant finding revealed by the general investigation of the total warm and cold extreme indices in the regions covered in the present study is the prevalence of the warming trend over the examined statistical era. The results of the maximum of one-day precipitation amount and the maximum of five-day precipitation amount indices were also indicative of remarkable precipitation rates in the regions based on these indices. The average was 177 mm (in Kuhrang station). The average was 347 mm (in Kuhrang station). The trend of temporal variations in these two indices was also insignificant in the majority of stations in the regions corresponding to the R99p, R95p, R20mm, PRCPTOT, and CWD indices.

Conclusion

The investigation and analysis of the extreme indices trend revealed that the occurrence of warm extreme events was increasing, while the occurrence of cold extreme events was decreasing in the areas covered in this study. One of the main reasons behind these phenomena has been progressive global warming, particularly since the late 1990s. The results of the present study concerning temperature extreme events confirm previous findings (by Zhang et al. 2005, Alexander et al. 2006, Zhao et al. 2012, Varshavian et al. 2011, Miri and Rahimi 2015, Karimi et al. 2018) stated in some studies that investigated temperature extreme indices. The above-mentioned researchers have also highlighted the increasing trend of warm extreme indices and the declining trend of cold extreme indices in their studies. According to the results obtained by the investigation of the frequency of the occurrence and trend of extreme precipitation indices in the areas covered in this study, it can be asserted that the total precipitation rate has been declining corresponding to the majority of Iranian provinces. However, maximum precipitation rates have been declining from 1988 to 2017 despite exhibiting noticeable extreme amounts. Hence, it could be stated that extreme precipitation events increase, whereas the duration of the wet season shortens. Moreover, the declining trend of the wet days' index and the increasing trend of successive dry days' index in Western and Southwestern Iran could be indicative of the gradual intensification of water scarcity. The results of the present study concerning precipitation extreme events largely confirm the findings reported in corresponding studies (such as Klein Tank et al. 2006, I'm et al. 2010, Jones et al. 2012, Koozegaran and Mousavi Baigi 2015) that emphasized the increased extreme precipitation rate and the decreased amount of total precipitation rate.

کلیدواژه‌ها [English]

  • Precipitation
  • temperature
  • hot days
  • cold nights
  • west and southwest of Iran
  1. Aerenson, T., C. Tebaldi, B. Sanderson and J.F. Lamarque. 2018. Changes in a suite of indicators of extreme temperature and precipitation less than 1.5 and 2 degrees warming. Environmental Research Letters, 13 (3): 035009. doi.org/10.1088/1748-9326/aaafd6.
  2. Alexander, L.V. and et al. 2006. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. Journal of Geophysical Research, 111(5): 1-22. Doi: 10.1029/2005JD006290.
  3. Alexandera, L.V. and J.M. Arblaster. 2017. Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather and Climate Extremes, 15:34–56.doi.org/10.1016/j.wace.2017.02.001
  4. Alijani, B. and H. Farajzadeh. 2015. Trend Analysis of Extreme Temperature Indices in the North West of Iran. Journal of Geography and Planning, 19 (52): 256-229.
  5. An, A., Y. Du, R. Berndtsson, Z. Niu, L. Zhang and F. Yuan. 2019. Evidence of climate shift for temperature and precipitation extremes across Gansu Province in China. Theoretical and Applied Climatology, 139: 1137-1149. doi.org/10.1007/s00704-019-03041-1.
  6. Borna, R. and E. Hassanzadeh ShahRezaei. 2016. Extreme Climate Events Analysis and Assessment of Khuzestan Province by Mann Kendall Method. Geography (Regional Planning), 6 (3): 7-18.
  7. Cooper, R.T. 2019. Projection of future precipitation extremes across the Bangkok Metropolitan Region. Heliyon, 5(5): e01678. doi.org/10.1016/j.heliyon. 2019. e01678.
  8. Dannenberg M. P., Wise E. K., and Smith W. K. 2019.Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation Science advances, 5(10): eaaw0667.
  9. Erfanian, M., H. Ansari, A. Alizadeh and M. BanayanAval. 2017. Estimation of Relationship between Frequency-Duration and Return Period of Extreme Climatic Events in Khorasan Razavi Province. Geographical researches quarterly journal, 32 (1):37-50.
  10. Gupta, S., Gupta, A., Himanshu, S.K., Singh, R.‚ (2020). Analysis of the Extreme Rainfall Events Over Upper Catchment of Sabarmati River Basin in Western India Using Extreme Precipitation Indices‚ In Advances in Water Resources Engineering and Management (pp 103-111): Springer.
  11. Im, E.S., I.W. Jung and D.H. Bae. 2011. The temporal and spatial structures of recent and future trends in extreme indices over Korea from a regional climate projection. International Journal of Climatology, 31(1): 72–86.
  12. Jones, M. R., H. J. Fowler, C.G. Kilsby and S. Blenkinsop. 2012. An assessment of changes in seasonal and annual extreme rainfall in the UK between 1961 and 2009. International Journal of Climatology 33(5):1178-1194. doi:10.1002/joc.3503.
  13. Karimi, M., F. Sotoudeh and S. Rafati. 2018. The Trend Analysis and Forecasting of Extreme Temperature Parameters in Southern Part of the Caspian Sea. Journal of Applied Research in Geographical Sciences, 18 (48): 93-79.
  14. Klein Tank, A.M.G. and et al. 2006. Changes in Daily Temperature and Precipitation Extremes in Central and South Asia. Journal of Geophysical Research-Atmospheres, 19(111). Doi: 10.1029/2005JD006316.
  15. Koozegaran, S. and M. Mousavi Baigi. 2015. Investigation of Meteorological Extreme Events in the North-East of Iran. Journal of Water and Soil, 29 (3): 764-750.
  16. Lucio, P. S., A. M. Silva, and A.I. Serrano. 2010. Changes in occurrences of temperature extremes in continental Portugal: a stochastic approach. Meteorological Applications, 17(4): 404-418.
  17. Miri, M. and M. Rahimi. 2015. Spatial and Temporal Trend Analysis of Temperature Parameters in Iran. Geographical Journal of Territory, 12(47): 65-79.
  18. Miri, M., J. Masoompour Samakosh, T. Raziei, A. Jalilian, and M. Mahmodi. 2021. Spatial and Temporal Variability of Temperature in Iran for the Twenty-First Century Foreseen by the CMIP5 GCM Models. Pure and Applied Geophysics, 178:169–184.
  19. Mistry, M. N. (2019). A high-resolution global gridded historical dataset of climate extreme indices. Data, 4(1), 41.
  20. Mohammadi, H., G. Azizi and F. KhoshAkhlagh. 2017. The Trend Analysis of Extreme daily precipitation Indices in Iran. Natural Geography Research, (1) 49: 37-21.
  21. Mónica, S. and F. Santos. 2011. Trends in extreme daily precipitation indices in Northern of Portugal. Geophysical Research Abstracts, 13: EGU2011-11285. doi: 10.1002/joc.1834.
  22. Mozafari, G.A. and S. Shafiei. 2016.Temporal-spatial Analysis of Rainfall Days Frequency Trend of Western IRAN Regions. Geographical Quarterly of Sarzamin, 13 (52): 94-77.
  23. Peterson, T.C., M.A. Taylor, R. Demeritte, D.L. Duncombe, S. Burton, F. Thompson, A. Porter, M. Mercedes, E. Villegas, R. Semexant Fils, A. Klein Tank, A. Martis, R. Warner, A. Joyette, W. Mills, L. Alexander, and B. Gleason. 2002. Recent changes in climate extremes in the Caribbean region. Journal of Geophysical Research, 107 (D21): 1-19. doi.org/10.1029/2002JD002251.
  24. Pińskwar, I., Choryński, A., Graczyk, D., Kundzewicz, Z.W.‚ (2019). "Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990"‚ Theoretical and Applied Climatology (135)‚ Pp 773-787.
  25. Rahimzadeh, F. 2005. Investigation of changes in Extreme Precipitation values in Iran, Journal of Nivar, 30 (59), 7-20.
  26. Rahimzadeh, F., A. Asgari and E. Fattahi. 2008. Variability of extreme temperature and precipitation in Iran during recent decades. International Journal of Climatology, 29: 329_343, doi.org/10.1002/joc.1739

 

  1. Rao, X., X. Lu and W. Dong. 2019. Evaluation and Projection of Extreme Precipitation over Northern China in CMIP5 Models. Atmosphere, 10(11): 691. Doi: 10.3390/atmos10110691.
  2. Varshavian, V., A. Khalili, N. Ghahraman and S. Hojam. 2011. Trend analysis of minimum, maximum, and mean daily temperature extremes in several climatic regions of Iran. Journal of the Earth and Space Physics, 37 (1): 179-169.
  3. Zarin, A., and A. Dadashi Rudbari. 1400. The effect of climate change on Iran's heavy rains using the multi-model ensemble. Journal of Water and Sustainable Development, (4): 119-124.
  4. Zhang, X. 2005. The trend in Middle East climate extreme indices from 1950 to 2003. Journal of Geophysical Research, 110: D22104. DOI: 10.1029/2005JD006181.
  5. Zhao, C., W. Wang and W. Xing. 2012. Regional Analysis of Extreme Temperature Indices for the Haihe River Basin from 1960 to 2009. International Conference on Modern Hydraulic Engineering, 28: 604-607.