بهبود شبکه عصبی روش گروهی مدل سازی داده با استفاده از الگوریتم حشره آب‌سوار در پیشبینی دما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده اقلیم شناسی-گروه بلایای جوی اقلیمی-مشهد-ایران

2 استادیار، دانشگاه آزاد اسلامی واحد بیرجند، گروه کامپیوتر، بیرجند

3 دانشجوی دکتری، دانشگاه آزاد اسلامی واحد بیرجند، بیرجند

چکیده

تغییرات اقلیمی آشکار پیش‌رو، تبدیل به دغدغه‌ای جدی برای جامعه بشری شده است و در این بین گرمایش جهانی یکی از گسترده ترین و مهم‌ترین مخاطرات زیست محیطی است بنابراین پیشبینی مناسب دما، اهمیت قابل توجهی در راستای سازگاری با تغییر اقلیم و کاهش آسیب پذیری ها در مقیاس های محلی دارد . برای این منظور در این تحقیق پیشبینی دما با یکی از روش های شبکه عصبی را پیشنهاد دادیم. پس از جمع‌آوری داده‌های ایستگاه اقدسیه در مرحله پیش‌پردازش پس از پاک‌سازی و نرمال‌سازی داده‌ها، عمل انتخاب ویژگی با استفاده از الگوریتم تحلیل مؤلفه‌های اصلی انجام می‌شود، سپس در مرحله پس‌پردازش شبکه عصبی روش گروهی مدل‌سازی داده با استفاده از الگوریتم حشره آب‌سوار بهبود داده می‌شود تا پیشبینی دما به صورت بهینه انجام شود. نوآوری این تحقیق استفاده از الگوریتم حشره آب‌سوار در بهبود شبکه عصبی روش گروهی مدل‌سازی داده است. پارامترهایی در روش گروهی مدل‌سازی داده‌ها به عنوان متغیرهای تصمیم‌گیری تعریف می‌شوند در این تحقیق مقادیر بهینه این پارامترها، توسط الگوریتم حشره آب‌سوار تعیین شده تا پیشبینی دما با دقت بالایی انجام شود و در جهت مقایسه روش پیشنهادی، از شبکه‌ عصبی پرسپترون چندلایه آموزش‌یافته با الگوریتم حشره آب سوار استفاده شده است. نتایج حاکی از میانگین مربعات خطای 0.0469 در روش پیشنهادی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of the neural network group method of data modeling using Water strider algorithm in temperature prediction

نویسندگان [English]

  • sharareh malboosi 1
  • mehdi khazaiepoor 2
  • samira shahraki 3
1 Climatology Research Institute-Climatic Disasters Group-Mashhad-Iran
2 Member of the academic staff of Birjand Azad University
3 PHD student
چکیده [English]

Proper temperature forecasting is of significant importance in adapting to climate change at local scales. For this purpose, in this research, feature selection is done using principal component analysis algorithm, then in the post-processing stage of the neural network, the group method of data modeling is improved using the water strider algorithm, so that the temperature prediction can be done optimally. In order to compare, the results show a decrease in mean square error of 0.0469 in the proposed method compared to the feature selection method using mlp.

Keywords: temperature prediction, neural network, data modeling group method, water strider algorithm.



1- Introduction

Forecasting temperature fluctuations plays a vital role in studying future climate patterns. Weather forecasting has always been a big challenge for meteorologists to predict the future weather and weather conditions [1]. In their article, Gupta et al. (2022) discussed a model based on multiple linear regression to predict the average temperature of a day. Conclusions are made according to the performance of the evaluated model. This model can successfully predict the average temperature of a day with an error of 2.8 degrees Celsius [2]. Fona et al. (2021) in their paper estimated rainfall based on remote sensing using massive data with the help of integrated routing framework. The results show proper evaluation and error reduction for rainfall forecasting in the proposed BIRSM model and artificial neural network.[3 ].



2- Water strider algorithm

In this water strider algorithm, the food sources required are females. Males are the preferred mating sources. Males send calling signals and females respond to them in the form of attraction or repulsion signals.

Step 1: The first step of early birth

Step 2: Territory Building: Aquatic insects maintain territories to survive, mate, and feed.

The third step of pairing:

Step 3: nutrition:

Step 4: death and success:

3- Analysis of main components

This algorithm is used to reduce the dimension

4- Group method of data modeling

In general, to model complex systems that include a set of data with several inputs and one output, formula (6).

The GMDH neural network is created through a quadratic polynomial of formula (7) and the mean square error of formula (8):

The partial derivative of the matrix equation (Aa=y) is obtained.

5- multilayer perceptron neural network

This network includes an input layer, an intermediate layer and an output layer. In our problem, the best solution is usually obtained with the number of 10 neurons in the hidden layer.



6- Proposal method:

In this research, the database includes the data of the Aqdasiye weather station, it includes 2721 samples with 23 characteristics, which are related to the last 8 years. Using the principal component analysis algorithm, 6 features have been selected from among the 23 available features. The following formulas have been used to evaluate the models.

In formula (14), the mean square error function as the objective function,

Initial preparation stage: In this stage, a population of water strider is created randomly. The position of each aquatic insect includes four components: the maximum number of layers, the maximum number of neurons in each layer, and the pressure parameter selected according to table (2).

Repetition stage: In this stage, the above operations are repeated.

Table (3) shows the position of the male water beetle before and after mating, and the flowchart of the proposed method is shown in Figure (1).

7- Simulation results

7-1- The results of temperature prediction with the proposed method

In the proposed method, the parameters of the population size of water strider are considered equal to 50 and the maximum number of repetitions is equal to 1000, and the results are based on the types of errors according to table (4).



Figure (2) and Figure (3) show error and regression histograms for training and test data, respectively

7-2- The results of temperature prediction with multilayer perceptron neural network trained with water strider algorithm

The number of neurons in the hidden layer is equal to 5, the results are based on the types of errors according to table (5).

Figures (4) and (5) show the histogram of error and regression for training data, test data and total data, respectively.

According to table (6) and figure (6), the neural network of the proposed method has a better performance in temperature prediction in terms of error types for the training, experimental and total data compared to the multilayer perceptron neural network trained with The algorithm has water strider.

8-Conclusion

This article is based on temperature forecasting using data mining methods. According to tables (4) and (5), the neural network of the improved data modeling group method with the water strider algorithm and the multilayer perceptron neural network trained with the algorithm water strider predicted the temperature with mean square error of 0.0469 and 0.0529, respectively. Therefore, the best performance belongs to the neural network of the proposed method.

References

[1]. R. Palamuttam, R. Palamuttam, R. M. Mogrovejo, C. Mattmann, B. Wilson, K. Whitehall, R. Verma, L. McGibbney and P. Ramirez, "SciSpark: Applying in-memory distributed computing to weather event detection and tracking," in 2015 IEEE international conference on Big data (Big data), pp. 2020-2026: IEEE, 2015.

[2]. I. Gupta, H. Mittal, D. Rikhari, and A. K. Singh, "MLRM: A Multiple Linear Regression based Model for Average Temperature Prediction of A Day," arXiv preprint arXiv:2203.05835, 2022.

[3]. J. Refonaa and M. Lakshmi, "Remote sensing based rain fall prediction using big data assisted integrated routing framework," Journal of Ambient Intelligence and Humanized Computing, pp. 1-11, 2021.

کلیدواژه‌ها [English]

  • Keywords: temperature prediction
  • neural network
  • data modeling group method
  • water strider algorithm
  1. Azari and M. Tabesh, "Urban storm water drainage system optimization using a sustainability index and LID/BMPs," Sustainable Cities and Society, vol. 76, p. 103500, 2022.
  2. Azizi and C. I. Meier, "Urban Pluvial Flood Risk Assessment: Challenges and Opportunities for Improvement Using a Community-Based Approach," in World Environmental and Water Resources Congress 2021, pp. 350-361, 2021.
  3. Palamuttam, R. Palamuttam, R. M. Mogrovejo, C. Mattmann, B. Wilson, K. Whitehall, R. Verma, L. McGibbney and P. Ramirez, "SciSpark: Applying in-memory distributed computing to weather event detection and tracking," in 2015 IEEE international conference on Big data (Big data), pp. 2020-2026: IEEE, 2015.
  4. Tasnádi, F. Bock, J. Tidholm, A. V. Shapeev, and I. A. Abrikosov, "Efficient and accurate prediction of elastic properties of Ti0. 5Al0. 5N at elevated temperature using machine learning interatomic potential," Thin Solid Films, p. 138927, 2021.
  5. Gupta, H. Mittal, D. Rikhari, and A. K. Singh, "MLRM: A Multiple Linear Regression based Model for Average Temperature Prediction of A Day," arXiv preprint arXiv:2203.05835, 2022.
  6. Refonaa and M. Lakshmi, "Remote sensing based rain fall prediction using big data assisted integrated routing framework," Journal of Ambient Intelligence and Humanized Computing, pp. 1-11, 2021.
  7. Cheng, Z. Zheng, J. Wang, L. Yang, and S. Wan, "Attribute reduction based on genetic algorithm for the coevolution of meteorological data in the industrial internet of things," Wireless Communications and Mobile Computing, vol. 2019, 2019.
  8. Karevan and J. A. Suykens, "Transductive LSTM for time-series prediction: An application to weather forecasting," Neural Networks, vol. 125, pp. 1-9, 2020.
  9. Dhamodharavadhani and R. Rathipriya, "Region-wise rainfall prediction using mapreduce-based exponential smoothing techniques," in Advances in big data and cloud computing: Springer, pp. 229-239, 2019.
  10. Soares, P. Costa Jr, B. Costa, and D. Leite, "Ensemble of evolving data clouds and fuzzy models for weather time series prediction," Applied Soft Computing, vol. 64, pp. 445-453, 2018.
  11. I. Rasel, N. Sultana, and P. Meesad, "An application of data mining and machine learning for weather forecasting," in International conference on computing and information technology, pp. 169-178: Springer, 2017.
  12. Sahoo, "A Parallel Forecasting Approach Using Incremental K-means Clustering Technique," in Computational Intelligence in Data Mining: Springer, pp. 165-172, 2017.
  13. C. Onal, O. B. Sezer, M. Ozbayoglu, and E. Dogdu, "Weather data analysis and sensor fault detection using an extended IoT framework with semantics, big data, and machine learning," in 2017 IEEE International Conference on Big Data (Big Data), pp. 2037-2046: IEEE, 2017.
  14. Kaveh and A. D. Eslamlou, "Water strider algorithm: A new metaheuristic and applications," in Structures, vol. 25: Elsevier, pp. 520-541, 2020.
  15. M. S. Hasan and A. M. Abdulazeez, "A review of principal component analysis algorithm for dimensionality reduction," Journal of Soft Computing and Data Mining, vol. 2, no. 1, pp. 20-30, 2021.
  16. Wu, Y. Wang, X. Zhang, and Z. Chen, "A novel state of health estimation method of Li-ion battery using group method of data handling," Journal of Power Sources, vol. 327, pp. 457-464, 2016.
  17. Vang-Mata, Multilayer Perceptrons: Theory and Applications. Nova Science Publishers, 2020.

 

  1. Azari, K. Hassan, J. Pierce, and S. Ebrahimi, "Evaluation of machine learning methods application in temperature prediction," Environ Eng, vol. 8, pp. 1-12, 2022.