پیش بینی مسیر حرکتی ذرات گرد و غبار با استفاده از HYSPLIT و مدل WRF-Chem در حوزه جازموریان (مطالعه موردی گرد و غبار 7 و 8 اکتبر 2018)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی طبیعت دانشکده منابع طبیعی دانشگاه جیرفت

2 استادیار پژوهشی پژوهشکده هواشناسی و علوم جو سازمان هواشناسی کشور

3 استاد مرکز مطالعات سنجش از دور و GIS دانشگاه شهید بهشتی

چکیده

حوزه جازموریان به لحاظ نقش اکولوژیک و همچنین اثر گذاری آن بر استان های کرمان، سیستان و بلوچستان و هرمزگان از اهمیت بالایی در مسائل زیست محیطی دارد. ذرات ریزگردی که در مواقع خشکسالی از سطح این منطقه بلند میشود میتواند به لحاظ ویژیگی های آئرودینامیکی ذرات و شرایط جوی هزاران کیلومتر مسیر طی کند و جوامع طبیعی و غیر طبیعی و همچنین انسانی را تحت تاثیر قرار دهد. به همین دلیل در این مطالعه از رخدادگرد و غبار 7 و 8 اکتبر سال 2018 به منظور تحلیل عددی و همچنین مسیر یابی این ذرات استفاده شد. در این تحقیق از مدل های HYSPLIT و WRF-Chem استفاده گردید. نتایج حاصل از مدل HYSPLIT نشان داد ذرات برخاسته از این بخش، تحت تاثیر جریابات شرقی و شمال شمالی قرار گرفته و به سمت جنوب و جنوب غربی حرکت کرده‌اند و به روی منطقه خلیج فارس رفته اند. همچنین نتایج شاخص AOD شبیه سازی شده توسط مدل WRF-Chem نشان میدهد که مقدار شاخص در 7 اکتبر 2018 از 0/5 تا 2/1 از قسمت های جنوبی حوزه جازموریان تا دریایی عمان افزایشه یافته و در روز 8 اکتبر 2018 این مقدار تا 4/0 کاهش یافته است. همچنین غلظت سطحی ‌گردوغبار‌ بالاتر در جنوب استان سیستان و بلوچستان ، استان هرمزگان و شمال دریای عمان بالاتر از 5000 میکروگرم برمترمکعب است. غلظت سطحی ‌گردوغبار‌ در نیمه جنوبی منطقه جازموریان نیزبالاتر از 5000 میکروگرم بر متر مکعب است. نتایج نشاد می دهد که مدیریت حوزه جازموریان در مواقع خشکسالی یا در شرایطی که رطوبت سطحی خاک کاهش یافته بسیار حائز اهمیت است و میتواند به عنوان کانون برداشت گرد و غبار جنوب شرق کشور شاسایی شود.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of dust particle movement using HYSPLIT and WRF-Chem model in Jazmorian basin (Case study of dust 7 and 8 October 2018)

نویسندگان [English]

  • Farshad Soleimani Sardoo 1
  • Sara Karami 2
  • ali akbar motakan 3
1 university of Jiroft
2 meteorological
3
چکیده [English]

Introduction

Dust storms are always known as one of the natural hazards that affect various sectors such as health, agriculture, transportation, etc. and have very wide consequences, especially reduced soil fertility, damage to crops, drying of cover. Natural plant causes disorders of communication systems, disorders of mechanical systems and an increased risk of respiratory diseases. In general, the main source of dust storms, or in other words, the main origin of dust storms is located in arid regions of the world such as East Asia, Middle East, Latin America, Australia, parts of Europe, East and South Africa, North America. In addition to the internal centers of the country, the main effective centers are the centers located in Iraq, Syria, the Arabian Peninsula and Afghanistan. In order to manage dust storms, forecasting and routing this phenomenon is of great importance. The lowest and highest range of dust suspended particles is from a few nanometers to 100 microns. Large particles usually move by rolling, medium particles by jumping, fine particles such as clay particles due to their lightness rise to a high height above the ground and remain suspended in the air for a long time and descend after a long distance. In suspension motion, very fine soil particles, after rising from the ground due to their extraordinary lightness and high specific surface area, remain suspended in the air for a long time and in the presence of favorable atmospheric currents, sometimes travel hundreds or thousands of kilometers and up to more than a few altitudes. They extend a thousand meters above the ground.



Materials and methods

Jazmourian basin is the most important basin in the southeast of Iran, which is located in Kerman, Sistan and Baluchestan provinces with the latitude coordinates of 33 ْ 26 to 36 ْ 29 north and the longitude of 16 ْ 56 to 26 ْ 26 east and with an area of 69374 square kilometers. After statistical study of the phenomenon of "dust" and the factors affecting it in the Jazmourian basin, the severe and widespread occurrence of "dust" in the Jazmourian basin is investigated. First, in order to investigate the "dust" mass in the region, the true color image of the Madis sensor of the Tera and Aqua satellites and the optical depth values of the airships are examined. Then, to investigate the prevailing atmospheric currents in the region, the HYSPLIT model is implemented as a matrix and in a leading way. In implementing the HYSPLIT model, GDAS meteorological data with a horizontal separation of 0.5 degrees have been used. Using the output of this model, it is possible to investigate the transfer of "dust" particles from this area.



Results and discussion

The True Color Composite and the light depth of the Aqua satellite sensor on October 7 and 8, 2018 show that the AOD values in the whole region are high every 2 days. Also, the True Color Composite of the MADIS sensor of the Aqua satellite shows the high values of "dust" concentration in the Jazmorian region. And they have gone to the Persian Gulf region. Particle optical depth values at UTC06 on October 8, 2018 show that AOD values on the North Sea of Oman have increased significantly and reached 1. Also, the amount of this quantity has reached 1 in the southern half of Jazmourian region, but it has reached 0.7 in a large part. Particle optical depth values at UTC12 on October 8, 2018 show that AOD values on the north of the Oman Sea have increased and reached 1.2. Also, the amount of this quantity has reached 1 in the southern half of Jazmorian region, but has reached 0.7 in a large part of Jazmorian region. Also, the values of the optical depth of the particles at UTC18 on October 8, 2018 show that the AOD values on a large part of the Oman Sea remain 1.2. But the amount of this quantity has decreased in the southern half of Jazmourian region and has reached 0.7 only in a small part of Jazmourian region.

Conclusion

Dust from these areas can directly affect the provinces of Kerman, Sistan and Baluchestan, as well as Hormozgan. Therefore, it is very important to study the path of particles as well as the dust collection centers. In this study, the beginning of the dust storm from October 7 to 8, 2018 was selected for simulation and navigation. The results showed that the southern parts of Jazmourian basin (wetland area and its surroundings) can be used as a critical dust center in these areas. Particles from these areas also move towards the Sea of Oman, which affects most of Hormozgan province and southern Sistan, and is also important for navigation and navigation systems.

Keywords: Dust Particles, Numerical Routing, Jazmourian Basin

کلیدواژه‌ها [English]

  • Dust Particles
  • Numerical Routing
  • Jazmourian Basin
  1. Abbaspour, Majid. 2011. "Air Pollution Modeling", 1st Edition, Tehran, Sharif University of Technology Scientific Publishing Institute.
  2. Ahmadi H, Esmaeilpour Y, Moradi A, Gholami H. 2019. Assessment of land Sensitivity to Desertification Hazard Using System Dynamics Approach in the Jazmourian basin. J. of Water and Soil Conservation, Vol. 26(2), 2019. DOI: 10.22069/jwsc.2019.15565.3076
  3. Alfaro, S.C., 2008. Influence of soil texture on the binding energies of fine mineral dust particles potentially released by wind erosion. Geomorphology 93, 157e167.
  4. Alizadeh Choobari, Omid, Zawar-Reza, Peyman and Sturman, Andrew. 2014. “The wind of 120 days and dust storm activity over the Sistan Basin”, Journal of Atmospheric Research, No. 143, pp. 328-341.
  5. Azizi, G., Shamsipour, A., Miri, M., Safarrad, T., 2012. Synoptic and remote sensing analysis of dust events in southwestern Iran. Nat. Hazards 64, 1625–1638.
  6. Babaian, Ebrahim., Bahrami, Hosseinali and Babaian, Fariba. 2010. "Dust Storm and Recent Evolution and Developments", Proceedings of the National Conference on Wind Erosion and Dust Storms, Yazd-Iran, February 27-28, Volume 2, p. 73-80.
  7. Baghbanan, P.; Ghavidel, Y.; Farajzadeh, M. Spatial analysis of spring dust storms hazard in Iran. Theor. Appl. Clim. 2019, 139, 1447–1457
  8. Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.J., Hedin, L.O., 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491e497.
  9. Chappell, A., Sanderman, J., Thomas, M., Read, A., Leslie, C., 2012. The dynamics of soil redistribution and the implications for soil organic carbon accounting in agricultural south-eastern Australia. Glob. Chang. Biol. 18, 2081e2088.
  10. Ebrahimi, S.J., Ebrahimzadeh, L., Eslami, A., Bidarpoor, F., 2014. Effects of dust storm events on emergency admissions for cardiovascular and respiratory diseases in Sanandaj, Iran. J. Environ. Health Sci. Eng. 12, 110.
  11. Etemadi, H., Khazaei, M and Abbasi, Ismail, 2019, Routing of dust particles using HYSPLIT model, the first international conference on civil engineering, architecture and urban regeneration, Tehran, https://civilica.com / doc / 975963
  12. Ganbat, G. and Jugder, D., 2019, Observations and transport modeling of dust storm event over Northeast Asia using HYSPLIT.E3S Web of Conferences; Les Ulis Vol. 99, doi.org/10.1051/e3sconf/20199902002.
  13. Jebali, A., Z. Zare, M. Ekhtesasi and R. Jafari. 2019. Performance evaluation of detector algorithms of dust storms in arid lands, case study: Yazd Province. Desert Ecosystem Engineering Journal, 8(23): 85-105 (in Persian).
  14. Jickells, T. D., An, Z. S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., Torres, R., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67e71.
  15. Jish Prakash, P., Stenchikov, G., Kalenderski, S., Osipov, S., Bangalath, H., 2014. The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmospheric Chemistry & Physics Discussions 14, 19181–19245.
  16. Khalidi, R and Saeedi, M, 2018, Routing Dust Storms Using HYSPLIT Software (Case Study: Ahvaz, 2nd International Conference on Strategic Ideas in Architecture, Urban Planning, Geography and Sustainable Environment, Mashhad, https: //civilica.com/doc/787634
  17. Kok, Jasper F., Parteli, Eric J.R., Michaels, Timothy I. and Bou Karam, Diana. 2012. “The physics of wind-blown sand and dust”, Journal of Rep. Prog. Phys. No. 75, pp. 1-119.
  18. Li, J., Okin, G.S., Alvarez, L., Epstein, H., 2007. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry 85, 317e332.
  19. Lyles, M., Fredrickson, H., Bednar, A., Fannin, H., Griffin, D., Sobecki, T., 2012. Medical geology in the Middle East: potential health risks from mineralized dust exposure. EGU Gen. Assembly Conf. Abstr., 1668.
  20. Mesbahzadeh, Tayyebeh, Ali Salajeghe, Farshad S. Sardoo, Gholamreza Zehtabian, Abbas Ranjbar, Mario Marcello Miglietta, Sara Karami, and Nir Y. Krakauer 2020. "Spatial-Temporal Variation Characteristics of Vertical Dust Flux Simulated by WRF-Chem Model with GOCART and AFWA Dust Emission Schemes (Case Study: Central Plateau of Iran)" Applied Sciences10, no. 13: 4536. https://doi.org/10.3390/app10134536
  21. Rashki, Alireza, Kaskaoutis, Dimitris G., Rautenbach, C. J. Dew., Eriksson, Patrick G., Qiang, M. and Gupta, P. 2012. “Dust storms and their horizontal dust loading in the Sistan”, Journal of Aeolian Research, 5: 51-62.
  22. Reynolds, R., Belnap, J., Reheis, M., Lamothe, P., Luiszer, F., 2001. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. P. Natl. Acad. Sci. U. S. A. 98, 7123e7127.
  23. Shao, Y., Wyrwoll, K.-H., Chappell, A., Huang, J., Lin, Z., McTainsh, G.H., Mikami, M., Tanaka, T.Y., Wang, X., Yoon, S., 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Research 2, 181–204.
  24. Soleimani Sardoo., F., Mesbahzadeh, T., Salajeghe, A., Zehtabian, G., Ranjbar, A., miglietta M.M. and Karami, S., 2021. Identifying dust springs using WRF-Chem model and GOCART and AFWA wind erosion schemas (simulated dust storm on 05/22/2018). Environmental Sciences. 19(2): 91-110.
  25. Wang. Y, A, Stein., R, Draxler, D, Rosa and Zhang. X. 2011. Global sand and Dust storms in observation and HYSPLIT model verification. Atmospheric Environment. 45. 259-273.